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ABSTRACT

Kalman ¯lters are often used to estimate the state variables
of a dynamic system. However, in the application of Kalman
¯lters some known signal information is often either ignored or
dealt with heuristically. For instance, state variable constraints
(which may be based on physical considerations) are often ne-
glected because they do not ¯t easily into the structure of the
Kalman ¯lter. This paper develops an analytic method of in-
corporating state variable inequality constraints in the Kalman
¯lter. The resultant ¯lter is a combination of a standard Kalman
¯lter and a quadratic programming problem. The incorporation
of state variable constraints increases the computational e®ort of
the ¯lter but signi¯cantly improves its estimation accuracy. The
improvement is proven theoretically and shown via simulation
results obtained from application to a turbofan engine model.
This model contains 16 state variables, 12 measurements, and 8
component health parameters. It is shown that the new algo-
rithms provide improved performance in this example over un-
constrained Kalman ¯ltering.

INTRODUCTION

For linear dynamic systems with white process and
measurement noise, the Kalman ¯lter is known to be an
optimal estimator. However, in the application of Kalman
¯lters there is often known model or signal information that
is either ignored or dealt with heuristically [1]. This paper
presents a way to generalize the Kalman ¯lter in such a way
that known inequality constraints among the state variables
are satis¯ed by the state variable estimates.

The method presented here for enforcing inequality
constraints on the state variable estimates uses hard con-

straints. It is based on a generalization of the approach
presented in [2], which dealt with the incorporation of state
variable equality constraints in the Kalman ¯lter. Inequal-
ity constraints are inherently more complicated than equal-
ity constraints, but standard quadratic programming results
can be used to solve the Kalman ¯lter problem with in-
equality constraints. At each time step of the constrained
Kalman ¯lter, we solve a quadratic programming problem
to obtain the constrained state estimate. A family of con-
strained state estimates is obtained, where the weighting
matrix of the quadratic programming problem determines
which family member forms the desired solution. It is stated
in this paper, on the basis of [2], that the constrained es-
timate has several important properties. The constrained
state estimate is unbiased (Theorem 1 below) and has a
smaller error covariance than the unconstrained estimate
(Theorem 2 below). We show which member of all possi-
ble constrained solutions has the smallest error covariance
(Theorem 3 below). We also show the one particular mem-
ber that is always (i.e., at each time step) closer to the true
state than the unconstrained estimate (Theorem 4 below).
Finally, we show that the variation of the constrained es-
timate is smaller than the variation of the unconstrained
estimate (Theorem 5 below).

The application considered in this paper is turbofan en-
gine health parameter estimation [3]. The performance of
gas turbine engines deteriorates over time. This deterio-
ration can a®ect the fuel economy, and impact emissions,
component life consumption, and thrust response of the en-
gine. Airlines periodically collect engine data in order to
evaluate the health of the engine and its components. The
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health evaluation is then used to determine maintenance
schedules. Reliable health evaluations are used to antici-
pate future maintenance needs. This o®ers the bene¯ts of
improved safety and reduced operating costs. The money-
saving potential of such health evaluations is substantial,
but only if the evaluations are reliable. The data used
to perform health evaluations are typically collected dur-
ing °ight and later transferred to ground-based computers
for post-°ight analysis. Data are collected each °ight at
approximately the same engine operating conditions and
corrected to account for variability in ambient conditions
and power setting levels. Typically, data are collected for
a period of about 3 seconds at a rate of about 10 or 20
Hz. Various algorithms have been proposed to estimate en-
gine health parameters, such as weighted least squares [4],
expert systems [5], Kalman ¯lters [6], neural networks [6],
and genetic algorithms [7].

This paper applies constrained Kalman ¯ltering to es-
timate engine component e±ciencies and °ow capacities,
which are referred to as health parameters. We can use our
knowledge of the physics of the turbofan engine in order to
obtain a dynamic model [8, 9]. The health parameters that
we try to estimate can be modelled as slowly varying biases.
The state vector of the dynamic model is augmented to in-
clude the health parameters, which are then estimated with
a Kalman ¯lter [10]. The model formulation in this paper is
similar to previous NASA work [11]. However, [11] was lim-
ited to a 3-state dynamic model and 2 health parameters,
whereas this present work includes a more complete 16-state
model and 8 health parameters. In addition, we have some
a priori knowledge of the engine's health parameters: we
know that they never improve. Engine health always de-
grades over time, and we can incorporate this information
into state constraints to improve our health parameter es-
timation. (This is assuming that no maintenance or engine
overhaul is performed.) This is similar to the probabilistic
approach to turbofan prognostics proposed in [12]. The sim-
ulation results that we present here show that the Kalman
¯lter can estimate health parameter deviations with an av-
erage error of less than 5%, and the constrained Kalman
¯lter performs even better than the unconstrained ¯lter.

It should be emphasized that in this paper we are con-
¯ning the problem to the estimation of engine health param-
eters in the presence of degradation only. There are speci¯c
engine fault scenarios that can result in abrupt shifts in
¯lter estimates, possibly even indicating an apparent im-
provement in some engine components. An actual engine
performance monitoring system would need to include ad-
ditional logic to detect and isolate such faults.

KALMAN FILTERING

Consider the discrete linear time-invariant system given
by

xk+1 = Axk +Buk + wk (1)

yk = Cxk + ek

where k is the time index, x is the state vector, u is
the known control input, y is the measurement, and fwkg
and fekg are uncorrelated zero-mean white noise input se-
quences. We use Q to denote the covariance of fwkg and R
to denote the covariance of fekg, and ¹x to denote the ex-
pected value of x. The problem is to ¯nd an estimate x̂k+1
of xk+1 given the measurements fy0; y1; ¢ ¢ ¢ ; ykg. We will
use the symbol Yk to denote the column vector that con-
tains the measurements fy0; y1; ¢ ¢ ¢ ; ykg. The Kalman ¯lter
can be used to solve this problem as follows.

Kk = A§kC
T (C§kC

T +R)¡1 (2)

x̂k+1 = Ax̂k +Buk +Kk(yk ¡ Cx̂k) (3)

§k+1 = (A§k ¡KkC§k)A
T +Q (4)

where the ¯lter is initialized with x̂0 = ¹x0, and §0 =
E[(x0 ¡ ¹x0)(x0 ¡ ¹x0)

T ]. It can be shown [13] that the
Kalman ¯lter estimate has several attractive properties. It
is unbiased, and of all a±ne estimators, it is the one that
minimizes the variance of the estimation error. In addi-
tion, if x0, fwkg, and fekg are jointly gaussian, then the
Kalman ¯lter estimate is the one that maximizes the con-
ditional probability density function of the state given the
measurement history.

KALMAN FILTERING WITH INEQUALITY CONSTRAINTS

This section extends the well known results of the previ-
ous section to cases where there are known linear inequality
constraints among the state components. Also, several im-
portant properties of the constrained ¯lter are discussed.
Consider the dynamic system of (1) where we are given the
additional constraint

Dxk · dk (5)

whereD is a known s£n constant matrix, s is the number of
constraints, n is the number of state variables, and s · n. It
is assumed in this paper that D is full rank, i.e., that D has
rank s. This is an easily satis¯ed assumption. If D is not
full rank that means we have redundant state constraints.
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In that case we can simply remove linearly dependent rows
from D (i.e., remove redundant state constraints) until D
is full rank. Three di®erent approaches to the constrained
state estimation problem are given in this section. The time
index k is omitted in the remainder of this section for ease
of notation.

The Maximum Probability Method

In this section we derive the constrained Kalman ¯l-
tering problem by using a maximum probability method.
From [13, pp. 93 ®.] we know that the Kalman ¯lter esti-
mate is that value of x that maximizes the conditional prob-
ability density function P (xjY ). The constrained Kalman
¯lter can be derived by ¯nding an estimate ~x such that the
conditional probability P (~xjY ) is maximized and ~x satis¯es
the constraint (5). Maximizing P (~xjY ) is the same as max-
imizing its natural logarithm. So the problem we want to
solve can be given by

max lnP (~xjY ) =) min
~x
(~x¡ ¹¹x)T§¡1(~x¡ ¹¹x) (6)

such that D~x · d

Using the fact that the unconstrained state estimate x̂ = ¹¹x
(the conditional mean of x), we rewrite the above equation
as

min
~x
(~xT§¡1~x¡ 2x̂T§¡1~x) such that D~x · d (7)

Note that this problem statement depends on the condi-
tional gaussian nature of x̂, which in turn depends on the
gaussian nature of x0, fwkg, and fekg in (1).

The Mean Square Method

In this section we derive the constrained Kalman ¯lter-
ing problem by using a mean square minimization method.
We seek to minimize the conditional mean square error sub-
ject to the state constraints.

min
~x
E(kx¡ ~xk2jY ) such that D~x · d (8)

where k ¢ k denotes the vector two-norm. If we assume that
x and Y are jointly gaussian, the mean square error can be
written as

E(kx¡ ~xk2jY ) =
Z
(x¡ ~x)T (x¡ ~x)P (xjY )dx (9)

=

Z
xTxP (xjY )dx¡ (10)

2~xT
Z
xP (xjY )dx+ ~xT ~x

Noting that the Kalman ¯lter estimate is the conditional
mean of x, i.e.,

x̂ =

Z
xP (xjY )dx (11)

we formulate the ¯rst order conditions necessary for a min-
imum as

min
~x
(~xT ~x¡ 2x̂T ~x) such that D~x · d (12)

Again, this problem statement depends on the conditional
gaussian nature of x̂, which in turn depends on the gaussian
nature of x0, fwkg, and fekg in (1).

The Projection Method

In this section we derive the constrained Kalman ¯lter-
ing problem by directly projecting the unconstrained state
estimate x̂ onto the constraint surface. That is, we solve
the problem

min
~x
(~x¡ x̂)TW (~x¡ x̂) such that D~x · d (13)

where W is any symmetric positive de¯nite weighting ma-
trix. This problem can be rewritten as

min
~x
(~xTW ~x¡ 2x̂TW ~x) such that D~x · d (14)

The constrained estimation problems derived by the
maximum probability method (7) and the mean square
method (12) can be obtained from this equation by setting
W = §¡1 and W = I respectively. Note that this deriva-
tion of the constrained estimation problem does not depend
on the conditional gaussian nature of x̂; i.e., x0, fwkg, and
fekg in (1) are not assumed to be gaussian.

The Solution of the Constrained State Estimation Problem

The problem de¯ned by (14) is known as a quadratic
programming problem [14, 15]. There are many algorithms
for solving quadratic programming problems, almost all of
which fall in the category known as active set methods. An
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active set method uses the fact that it is only those con-
straints that are active at the solution of the problem that
are signi¯cant in the optimality conditions. Assume that
t of the s inequality constraints are active at the solution
of (14), and denote by D̂ and d̂ the t rows of D and t el-
ements of d corresponding to the active constraints. If the
correct set of active constraints was known a priori then
the solution of (14) would also be a solution of the equality-
constrained problem

min
~x
(~xTW ~x¡ 2x̂TW ~x) such that D̂~x = d̂ (15)

This shows that the inequality constrained problem de¯ned
by (14) is equivalent to the equality-constrained problem
de¯ned by (15). Note that ~x depends entirely on x̂ at
each time step. Although the equation for x̂ is recursive as
seen in (3), the equation for ~x is not recursive. Therefore,
an inequality-constrained Kalman ¯lter that uses active set
methods to enforce the constraints completely reduces to an
equality-constrained Kalman ¯lter, even though the active
set may change at each time step. The equality-constrained
problem was discussed in [2], in which there is no assump-
tion that the constraints remain constant from one time
step to the next. Therefore, those results can be used to in-
vestigate the properties of the inequality-constrained ¯lter.

Properties of the Constrained State Estimate

In this section we examine some of the statistical prop-
erties of the constrained Kalman ¯lter. We use x̂ to denote
the state estimate of the unconstrained Kalman ¯lter, and
~x to denote the state estimate of the constrained Kalman
¯lter as given by (14), recalling that (7) and (12) are special
cases of (14).

Theorem 1. The solution ~x of the constrained state estima-
tion problem given by (14) is an unbiased state estimator for
the system (1) for any symmetric positive de¯nite weighting
matrix W . That is,

E(~x) = E(x) (16)

Theorem 2. The solution ~x of the constrained state estima-
tion problem given by (14) with W = §¡1, where § is the
error covariance of the unconstrained estimate given in (4),
has an error covariance that is less than or equal to that of
the unconstrained state estimate. That is,

Cov(x¡ ~x) · Cov(x¡ x̂) (17)

At ¯rst this seems counterintuitive, since the standard
Kalman ¯lter is by de¯nition the minimum variance ¯lter.
However, we have changed the problem by introducing state
variable constraints. Therefore, the standard Kalman ¯lter
is no longer the minimum variance ¯lter, and we can do
better with the constrained Kalman ¯lter.

Theorem 3. Among all the constrained Kalman ¯lters result-
ing from the solution of (14), the ¯lter that uses W = §¡1

has the smallest estimation error covariance. That is,

Cov(x¡ ~x§¡1) · Cov(x¡ ~xW ) for all W (18)

Theorem 4. The solution ~x of the constrained state estima-
tion problem given by (14) with W = I satis¯es the inequal-
ity

kxk ¡ ~xkk · kxk ¡ x̂kk for all k (19)

where k¢k is the vector two-norm and x̂ is the unconstrained
Kalman ¯lter estimate.

Theorem 5. The error of the solution ~x of the constrained
state estimation problem given by (14) with W = I is
smaller than the unconstrained estimation error in the sense
that

Tr[Cov(~x)] · Tr[Cov(x̂)] (20)

where Tr[¢] indicates the trace of a matrix, and Cov(¢) indi-
cates the covariance matrix of a random vector.

The above theorems all follow from the equivalence
of (14) and (15), and the proofs presented in [2]. We note
that if any of the s constraints are active at the solution
of (14), then strict inequalities hold in the statements of
Theorems 2{5. The only time that equalities hold in the
theorems is if there are no active constraints at the solution
of (14); that is, if the unconstrained Kalman ¯lter satis¯es
the inequality constraints.

TURBOFAN ENGINE HEALTH MONITORING

The high performance turbofan engine model used in
this research is based on a gas turbine engine simulation
software package called DIGTEM (Digital Turbofan Engine
Model) [8, 16]. DIGTEM is written in Fortran and includes
16 state variables. It uses a backward di®erence integration
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scheme because the turbofan model contains time constants
that di®er by up to four orders of magnitude.

The nonlinear equations used in DIGTEM can be found
in [8, 9]. The time-invariant equations can be summarized
as follows.

_x = f(x; u; p) + w1(t) (21)

y = g(x; u; p) + e(t)

x is the 16-element state vector, u is the 6-element control
vector, p is the 8-element vector of health parameters, and y
is the 12-element vector of measurements. The noise term
w1(t) represents inaccuracies in the model, and e(t) rep-
resents measurement noise. The state variables and their
nominal values at the selected operating point are as fol-
lows:

² Low Pressure Turbine (LPT) rotor speed (9200 RPM)
² High Pressure Turbine (HPT) rotor speed (11900 RPM)
² Compressor volume stored mass (0.91294 lbm)
² Combustor inlet temperature (1325 R)
² Combustor volume stored mass (0.460 lbm)
² HPT inlet temperature (2520 R)
² HPT volume stored mass (2.4575 lbm)
² LPT inlet temperature (1780 R)
² LPT volume stored mass (2.227 lbm)
² Augmentor inlet temperature (1160 R)
² Augmentor volume stored mass (1.7721 lbm)
² Nozzle inlet temperature (1160 R)
² Duct air°ow (86.501 lbm/s)
² Augmentor air°ow (194.94 lbm/s)
² Duct volume stored mass (6.7372 lbm)
² Duct temperature (696 R)

The turbofan controls and their nominal values are as fol-
lows:

² Combustor fuel °ow (1.70 lbm/s)
² Augmentor fuel °ow (0 lbm/s)
² Nozzle throat area (430 in2)
² Nozzle exit area (492 in2)
² Fan vane angle ({1.7 deg)
² Compressor vane angle (4.0 deg)

The health parameters and their nominal values are as fol-
lows:

² Fan air°ow (193.5 lbm/s)
² Fan e±ciency (0.8269)
² Compressor air°ow (107.0 lbm/s)
² Compressor e±ciency (0.8298)
² HPT air°ow (89.8 lbm/s)
² HPT enthalpy change (167.0 Btu/lbm)

² LPT air°ow (107.0 lbm/s)
² LPT enthalpy change (75.5 Btu/lbm)

The turbofan measurements and their nominal values and
signal-to-noise ratios (SNRs) are as follows:

² LPT rotor speed (9200 RPM, SNR = 150)
² HPT rotor speed (11900 RPM, SNR = 150)
² Duct pressure (34.5 psia, SNR = 200)
² Duct temperature (696 R, SNR = 100)
² Compressor inlet pressure (36.0 psia, SNR = 200)
² Compressor inlet temperature (698 R, SNR = 100)
² Combustor pressure (267 psia, SNR = 200)
² Combustor inlet temperature (1325 R, SNR = 100)
² LPT inlet pressure (70.0 psia, SNR = 100)
² LPT inlet temperature (1780 R, SNR = 70)
² Augmentor inlet pressure (31.8 psia, SNR = 100)
² Augmentor inlet temperature (1160 R, SNR = 70)

The SNR values above are based on NASA experience and
previously published data [17]. Sensor dynamics are as-
sumed to be high enough bandwidth that they can be ig-
nored in the dynamic equations [17]. Equation (21) can
be linearized about the nominal operating point by using
the ¯rst order approximation of the Taylor series expan-
sion. This gives a linear small signal system model de¯ned
for small excursions from the nominal operating point.

± _x = A1±x+B±u+A2±p+ w1(t) (22)

±y = C1±x+D±u+ C2±p+ e(t)

We note that

A1 =
@f

@x
(23)

A1(i; j) ¼ ¢_x(i)

¢x(j)

Similar equations hold for the A2, C1, and C2 matrices. We
obtained numerical approximations to the A1, A2, C1, and
C2 matrices by varying x and p from their nominal values
(one element at a time) and recording the new _x and y
vectors in DIGTEM.

The goal of our turbofan engine health monitoring prob-
lem is to obtain an accurate estimate of ±p, which varies
slowly with time. We therefore assume that ±p remains es-
sentially constant during a single °ight. We also assume
that the control input is constant, so ±u = 0. (In real-
ity, ±u 6= 0, which complicates the problem and will give
di®erent results than we present in this paper. This will
be explored in further work.) This gives us the following
equivalent discrete time system [18, pp. 90 ®.].
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±xk+1 = A1d±xk +A2d±pk + w1k (24)

±yk = C1±xk + C2±pk + ek

where A1d = exp(A1T ) and A2d = A
¡1
1 (A1d¡I)A2 (assum-

ing that A1 is invertible, which it is in our problem). We
next augment the state vector with the health parameter
vector [11] to obtain the system equation·

±xk+1
±pk+1

¸
=

·
A1d A2d
0 I

¸ ·
±xk
±pk

¸
+

·
w1k
w2k

¸
(25)

±yk =
£
C1 C2

¤ · ±xk
±pk

¸
+ ek

where w2k is a small noise term (uncorrelated with w1k)
that represents model uncertainty and allows the Kalman
¯lter to estimate time-varying health parameter variations.
The discrete time small signal model can be written as·

±xk+1
±pk+1

¸
= A

·
±xk
±pk

¸
+ wk (26)

±yk = C

·
±xk
±pk

¸
+ ek

where the de¯nitions of A and C are apparent from a com-
parison of the two preceding equations. Now we can use
a Kalman ¯lter to estimate ±xk and ±pk. Actually, we are
only interested in estimating ±pk (the health parameter de-
viations), but the Kalman ¯lter gives us the bonus of also
estimating ±xk (the excursions of the original turbofan state
variables). Note that four of the state variables are directly
measured with good SNRs. The Kalman ¯lter equations
automatically use this information to improve its estimate
of all of the state variables and generate the optimal state
estimate.

It is known that health parameters do not improve over
time. That is, ±p(1), ±p(2), ±p(3), ±p(4), ±p(6), and ±p(8)
are always less than or equal to zero and always decrease
with time. Similarly, ±p(5) and ±p(7) (the two turbine air-
°ow parameters) are always greater than or equal to zero
and always increase with time. In addition, it is known that
the health parameters vary slowly with time. As an exam-
ple, since ~±p(1) is the constrained estimate of ±p(1), we can
enforce the following constraints on ~±p(1).

~±p(1) · 0 (27)
~±pk+1(1) · ~±pk(1) + °

+
1

~±pk+1(1) ¸ ~±pk(1)¡ °¡1

where °+1 and °¡1 are nonnegative factors chosen by the
user that allows the state estimate to vary only within pre-
scribed limits. Typically we choose °¡1 > °+1 so that the
state estimate can change more in the negative direction
than in the positive direction. This is in keeping with our
a priori knowledge that this particular state variable never
increases with time. Ideally we would have °+1 = 0 since
±p(1) never increases. However, since the state variable es-
timate varies around the true value of the state variable, we
choose °+1 > 0. This allows some time-varying increase in
the state variable estimate to compensate for a state vari-
able estimate that is smaller than the true state variable
value.

These constraints are linear and can therefore easily
be incorporated into the form required in the constrained
¯ltering problem statement (5). If the state constraints are
nonlinear they can be linearized as discussed in [2]. Note
that this does not take into account the possibility of abrupt
changes in health parameters due to discrete damage events.
That possibility must be addressed by some other means
(e.g., residual checking [3]) in conjuction with the methods
presented in this paper.

SIMULATION RESULTS

We simulated the methods discussed in this paper us-
ing MATLAB. We simulated a steady state 3 second burst
of engine data measured at 10 Hz during each °ight. The
nonlinear DIGTEM software described in the previous sec-
tion was used to generated the measurement data. Each
data collection was performed at the single operating point
shown earlier in this paper. The signal-to-noise ratios were
determined on the basis of NASA experience and previously
published data [17] and are shown earlier in this paper. The
Kalman ¯lter was re-linearized around the state estimates
every 50 °ights. We used a one-sigma process noise in the
Kalman ¯lter equal to approximately 1% of the nominal
state values to allow the ¯lter to be responsive to changes
in the state variables. We set the one sigma process noise
for each component of the health parameter portion of the
state derivative equation to 0.01% of the nominal parameter
value. This was obtained by tuning. It was small enough
to give reasonably smooth estimates, and large enough to
allow the ¯lter to track slowly time-varying parameters. For
the constrained ¯lter, we chose the ° variables in (27) such
that the maximum allowable rate of change in ~±p was the
sum of a linear and exponential function that reached 9%
after 500 °ights in the direction of expected change, and 3%
after 500 °ights in the opposite direction. The true health
parameter values never change in a direction opposite to the
expected change. However, we allow the state estimate to
change in the opposite direction to allow the Kalman ¯lter
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to compensate for the fact that the state estimate might be
either too large or too small. We set the weighting matrix
W in (14) equal to §¡1 in accordance with Theorem 3.

We simulated an exponential degradation of the eight
health parameters over 500 °ights. The initial health pa-
rameter estimation errors were taken from one-sided normal
distributions with standard deviations of 0.5% of their nom-
inal values. The simulated health parameter degradations
were representative of turbofan performance data reported
in the literature [19]. We ran 30 Monte Carlo simulations
like this, each with a di®erent noise history and di®erent
initial estimation errors. Figures 1 and 2 show the Kalman
¯lter's performance in a typical case when the initial esti-
mation errors are zero. Both simulations represented in the
¯gures have the same \random" measurement noise. Ta-
ble 1 shows the performance of the ¯lters averaged over all
30 simulations. The standard Kalman ¯lter estimates the
health parameters to within 4.66% of their ¯nal degrada-
tions. The constrained ¯lter estimates the health param-
eters to within 3.90% of their ¯nal degradations. These
numbers show the improvement that is possible with the
constrained Kalman ¯lter.

The improved performance of the constrained ¯lter
comes with a price, and that price is computational e®ort.
The constrained ¯lter requires about four times the compu-
tational e®ort of the unconstrained ¯lter. This is because
of the additional quadratic programming problem that is
required. However, computational e®ort is not a critical
issue for turbofan health estimation since the ¯ltering is
performed on ground-based computers after each °ight.

Note that the Kalman ¯lter works well only if the as-
sumed system model matches reality fairly closely. The
method presented in this paper, by itself, will not work well
if there are large sensor biases or hard faults due to severe
component failures. A mission-critical implementation of a
Kalman ¯lter should always include some sort of residual
check to verify the validity of the Kalman ¯lter results [20],
particularly for the application of turbofan engine health
estimation considered in this paper [3].

It can be seen from the ¯gures that although the con-
strained ¯lter improves the estimation accuracy, the general
trend of the state variable estimates does not change with
the introduction of state constraints. This is because the
constrained ¯lter is based on the unconstrained Kalman
¯lter. The constrained ¯lter estimates therefore have the
same shape as the unconstrained estimates until the con-
straints are violated, at which point the state variable esti-
mates are projected onto the edge of the constraint bound-
ary. The constrained ¯lter presented in this paper is not
qualitatively di®erent than the standard Kalman ¯lter; it is
rather a quantitative improvement in the standard Kalman
¯lter.

Table 1. KALMAN FILTER ESTIMATION ERRORS. THE NUMBERS

SHOWN ARE RMS ESTIMATION ERRORS AVERAGED OVER 30

SIMULATIONS WHERE EACH SIMULATION HAD A LINEAR-PLUS-

EXPONENTIAL DEGRADATION OF ALL EIGHT HEALTH PARAMETERS.

THE NUMBERS SHOW THE ERROR BETWEEN THE ESTIMATED AND

ACTUAL DEGRADATION AS PERCENTAGES OF THE DEGRADATION AT

THE FINAL TIME.

Estimation Error (%)

Health Parameter Unconstrained Constrained

Fan Air°ow 4.81 4.41

Fan E±ciency 5.85 4.60

Compressor Air°ow 3.43 2.73

Compressor E±ciency 4.82 3.80

HPT Air°ow 3.09 2.39

HPT Enthalpy Change 4.48 3.76

LPT Air°ow 4.54 4.26

LPT Enthalpy Change 6.28 5.22

Average 4.66 3.90

CONCLUSION

We have presented an analytic method for incorporat-
ing linear state inequality constraints in a Kalman ¯lter.
This maintains the state variable estimates within a user-
de¯ned envelope. The simulation results demonstrate the
e®ectiveness of this method, particularly for turbofan en-
gine health estimation.

If the system whose state variables are being estimated
has known state variable constraints, then those constraints
can be incorporated into the Kalman ¯lter as shown in this
paper. However, in implementation, the constraints en-
forced in the ¯lter might be more relaxed than the true
constraints. This allows the ¯lter to correct state variable
estimates in a direction that the true state variables might
never change. This is a departure from strict adherence to
theory, but in practice this improves the performance of the
¯lter. This is an implementation issue that is conceptually
similar to tuning a standard Kalman ¯lter.

We saw that the constrained ¯lter requires a much
larger computational e®ort than the standard Kalman ¯lter.
This is due to the addition of the quadratic programming
problem that must be solved in the constrained Kalman ¯l-
ter. The engineer must therefore perform a tradeo® between
computational e®ort and estimation accuracy.
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Figure 1. UNCONSTRAINED KALMAN FILTER ESTIMATES OF HEALTH

PARAMETERS. TRUE HEALTH PARAMETER CHANGES ARE SHOWN AS

HEAVY LINES. FILTER ESTIMATES ARE SHOWN AS LIGHTER LINES.

Figure 2. CONSTRAINED KALMAN FILTER ESTIMATES OF HEALTH

PARAMETERS. TRUE HEALTH PARAMETER CHANGES ARE SHOWN AS

HEAVY LINES. FILTER ESTIMATES ARE SHOWN AS LIGHTER LINES.
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