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Abstract: Unlike the well-known bang-bang control for 
continuous plants, the closed-form time optimal control 
for discrete time plants was obtained only recently [1,11]. 
It is shown in this paper that this new discrete time 
optimal control (DTOC) law offers a practical alternative 
to bang-bang control. A particularly interesting property 
of DTOC is that the control signal is not always bang-
bang. Instead of constant chattering, DTOC can produce a 
smooth control signal that results in a similar performance 
to that of the bang-bang control. Helpful insight is offered 
on how to maintain the smoothness of control signal in 
the presence of significant sensor noises.  Superior 
robustness of the new control law is demonstrated for a 
general second order system with substantial dynamic 
uncertainties. Implementation issues and the tuning of the 
control parameters are also discussed. Finally, the 
performance of the new control law is examined in an 
industrial motion control case study and a computer hard 
disk drive problem.   
 
Keywords: Time Optimal Control, Bang-Bang Control, 
Discrete Time Optimal Control, Motion Control. 
 
I. Introduction 
 
Servo control problems are one of the most common type 
of problems in manufacturing, as well as the defense 
industry.  The study of this problem, started in the 1950s, 
led to the formulation of Time Optimal Control (TOC) 
problem and its solution, the Bang-Bang controller [2-
4,9,10]. The research also led to the developments of 
Optimal Control theory [6-8].   
 
The TOC formulation captures the essence of many 
practical control problems, i.e., to reach the setpoint in the 
shortest time possible with limited actuator ranges. The 
application of its solution, Bang-Bang control, however, 
is quite limited because it unavoidably leads to 
undesirable control signal chattering, which could, in turn, 
lead to excessive wear and tear of the actuators.   
 
The work by J. Han and L. Yuan [11] provides an 
alternative mathematical solution to the DTOC problem. 
It was derived, using the isochronic regions (IR), for a 
discrete time, double-integral system. A closed-form 
solution is obtained and it demonstrates that the solution 
for DTOC problem is not necessarily bang-bang control. 
In fact, as shown below, the new solution completely 
resolved the chattering issue without compromising the 
performance.  Detailed derivations of the control law can 
be found in [1]. 

To summarize the new DTOC results, consider the 
discrete double integral plant 
 ( 1) ( ) ( )x k Ax k Bu k+ = + , |u(k)| ≤ r (1.1) 
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Note that h is the sampling period and r is the actuator 
saturation limit. The DTOC problem is defined as 
follows. 
 
Definition 1: Given the plant (1.1) and its initial state 
x(0), determining the control signal sequence, u(0), u(1), 
…, u(k), such that the state x(k) is driven back to the 
origin in a minimum number of steps, subject to the 
constraint of |u(k)| ≤ r, i.e.,  
  find u(k*), |u(k)| ≤ r, such that k*=min{k|x(k)=0} (1.2) 
 
The solution of this DTOC problem proposed in [1,11] is 
 1 2( ( , , , ), )u rsat a x x r h hr= −  (1.3) 
where
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This control law can be easily implemented in a digital 
computer as 
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 (1.4) 

Note that the well-known TOC solution for a continuous 
double integral plant, also known as the bang-bang 
control [2-10] is 

 2 2
1( )

2

x x
u r sign x

r
= − +  (1.5) 

The penalty associated with this control law is the 
frequent switching of the control signal between its two 
extreme values around the switching curve described in 
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(1.5), particularly around the origin, x=0. Furthermore, 
the instant switching requires an infinitely large u , which 
is usually not practical. Many modifications of the control 
law (1.5) were made to ease the implementation: 
1) Adding a dead zone: 

 0,u if x δ= <  (1.6) 
can be added to (1.5) to reduce the chattering of u around 
the origin. δ can be chosen by trial and error or set to  
 nδ

∞
=  (1.7) 

where n is the measurement noise in x. Or, 
2) Adding a linear region: 
 1 1 2 2 ,u k x k x if x δ= + <  (1.8) 

where 1k and 2k  are linear gains to be selected. 
3) Adding a saturation zone: 

 2 2
1 sat( )

2
,x x

u r x
r

δ= − +  (1.9) 

where the saturation function is defined as 
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 These modifications are rather ad-hoc, representing the 
trade-off between the speed of convergence and the 
smoothness of the control signal.  As demonstrated in this 
paper, the new DTOC solution fundamentally resolved 
this conflict and provided a practical time optimal control 
solution.   
 
The paper is organized as follows. The properties of 
DTOC are discussed in section II.  The implementation 
issues are examined in section III.  A case study in a 
motion control problem is presented in section IV and 
further illustrated in section V on a computer hard disk 
drive control problem.  Finally the concluding remarks 
can be found in section VI. 
 
II. Properties of DTOC 
 
A common goal in practical control design is to achieve 
maximum closed-loop bandwidth subject to physical and 
stability constraints.  This is because the higher the 
bandwidth, the better the command following and the 
disturbance rejection.  In motion control applications,  
“motion profile” is often used to provide the desired 
transient response. The design goal is to make the actual 
system follow this profile as quickly and closely as 
possible.  The quality of the following can be indeed 
measured by the closed-loop bandwidth, which directly 
impacts the rise and settling time.  That is, the maximum 
bandwidth results in minimum transient time.  For 
example, in a computer hard-disk drive, which is one of 
the most challenging motion control problems, the 
performance of the controllers are compared using the 
bandwidth because of its straight-forward relationship to 
the critical specification: the seek time. 

The TOC problem, as defined above, is similar to the 
maximum bandwidth problem.  The key difference, 
however, is that this is a nonlinear solution.  It is 
demonstrated in this paper that DTOC provides excellent 
solution for robust control and is extremely simple in 
implementation and tuning.  More importantly, the DTOC 
solution provides a powerful tool for engineers to seek 
compromise in performance and smoothness, and it has 
great potential for industrial applications. 
 
2.1. Performance Comparisons 
 
The key difference between the conventional continuous 
time optimal control (CTOC) and the DTOC solutions is 
that the control signal of DTOC is inherently smooth. 
Figure 2.1 shows the simulation setup of the comparison 
test, where the reference signal is a unit step function.  
Here, DTOC (r=5, h=.002), with the sampling period of 
Ts=.001 is compared to CTOC (r=5), as defined in [1], 
equation (2.6), and to the modified CTOC (MCTOC) 
defined in [1], equation (2.9), where r =5, δ=.01, and 
k1=k2=1.  The simulation is carried out in Simulink using 
the ode45 numerical integration algorithm with variable 
step size. The tracking errors and the control signals are  
captured and shown in Figure 2.2. 
 
From the simulation results in Figure 2.2 one may make 
the following observations:  
• In comparison, there are two problems in CTOC: 1) 

The control signal constantly bounces between the 
two extreme values; 2) there is an overshoot as the 
output approaches the steady state, i.e., it is not truly 
time optimal even though the simulation employs a 
good numerical integration algorithm. 

• The MCTOC is successful in eliminating the high 
speed control signal chattering at the cost of less 
desirable command following performance (steady 
state error, slower transient response). 

The DTOC is the obvious winner with the fastest 
converging time, no overshoot and smoother control 
signal.  It supports the mathematical derivation that the 
time optimal control for discrete time system is not 
always a bang-bang control. 
 
2.2 Robustness and Invariance of DTOC 
 
For a control method to be practical, it must be robust, 
which means the control system should be able to 
withstand the dynamic uncertainties in the plant and 
external disturbances.  How much uncertainty and 
disturbance it can tolerate while keeping the performance 
within the specifications offers a basis for comparison of 
various controllers.  
 
DTOC was derived for the double-integral plant defined 
in (1.1), which is the discrete time state space form of  
 uy = , |u|≤ r  (2.1) 
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Now consider a second order system 
 ( , , , )f t y y w uy = + , |u|≤ r  (2.2) 
where y is the output, u the input and w the disturbance.  
The conventional way of solving this problem is to 
identify, or estimate, ( , , , )f t y y w , which yields a 
mathematical form from which a control law is designed.  
Here we offer a different perspective: let’s assume that 

( , , , )f t y y w is totally unknown and, to us, the control 
problem is that of a double-integral problem.  Let’s see if 
the DTOC law is powerful enough to compensate for 

( , , , )f t y y w , without the knowledge of it.  To make the 
task challenging, let’s use a pulse sequence in place of 

( , , , )f t y y w  in simulation with a magnitude of ± 50% of 
r.  The simulation setup is shown in Figure 2.3. 
Simulation results in Figure 2.4 show that the DTOC was 
able to compensate for the particular, pulse-like, 

( , , , )f t y y w  quickly and efficiently. 
 

Robustness of DTOC: 
The level of robustness shown in Figure 2.3 and 2.4 is 
rarely seen in existing methods.  The robustness and 
disturbance rejection can be viewed, in this context, as 
one problem: to overcome ( , , , )f t y y w .  Philosophically, 
rather than relying on the prior knowledge of the plant, 
i.e., ( , , , )f t y y w , DTOC reacts aggressively to slight 
deviation in y and y from the setpoint at each sampling 
instant.  This begs the question of what we really need to 
know in order to control a plant, its model in terms of 

( , , , )f t y y w that describes the global dynamics during the 
operation, or its local behavior of e, e ... at each sampling 
instant. This example suggests that DTOC is a suitable 
solution for a class of control problems, and that the local 
behavior based design philosophy could very well be the 
design of choice, practically speaking.  More in-depth 
analysis is needed to verify this claim and will be 
discussed in future publications. 
 

 
Figure 2.1 Simulation Setup  

 

 
Figure 2.2 Comparisons of CTOC, MCTOC and DTOC 
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Figure 2.3 Simulation setup for robustness test 

 

 
Figure 2.4 Robustness of DTOC 

 
III. Implementation Issues  
 
DTOC has exhibited many desirable properties.  This 
section addresses the limitations of DTOC in practical 
applications. 
 
3.1 Extending DTOC to general second-order plants 
 
First, let’s consider a double-integral plant with non-unity 
gain: 
 buy = , |u|≤ r  (3.1) 
Let v=bu, (3.1) is equivalent to the problem of  
 ,   | |v v bry = ≤  (3.2) 
Then the control law solution of (2.3) can be derived from 
that of (2.4) by 
 u=v/b (3.3) 
Therefore, the DTOC law of (1.3) for the plant (3.1) is 
 u= -r sat(

1 2( , , , )a x x br h , hbr) (3.4) 
This control law can be implemented in a digital 
computer as 
 1 2(1/ ) (( , , , )u b fst x x br h=  (3.5) 
where the fst(.) function is defined in (1.4).   
 
It was demonstrated above that the DTOC has good 
disturbance rejection for the second order plant 

( , , , )f y y w t uy = + , |u|≤ r.  The above derivation now 
extends the scope of DTOC to 
 ( , , , )f y y w t buy = + , |u|≤ r (3.6) 
which is a general second order nonlinear plant. Here 

( , , , )f y y w t  represents the unknown plant dynamics and 
external disturbance and b is the only known parameter in 

the system.  In the case where b is not known, its 
estimate, 0b b≈ , is needed and (3.6) can be rewritten as  

 0 0[ ( , , , ) ( ) ]f y y w t b b b uy u= + − + , |u|≤ r (3.7) 
Clearly, the estimation error can be dealt with as part of 
the unknown disturbance. 
 
3.2 Noise and bandwidth issues  
 
Like any control design method, DTOC has advantages 
and disadvantages.  By nature, time optimal control is a 
very aggressive design. It is similar to a linear controller 
designed for a maximum bandwidth because both of them 
seek to reduce the tracking error in the shortest time 
permissible. Since the controller performance is usually 
measured in how well the output of the plant tracks the 
reference, especially in the presence of disturbances, the 
design objective of time optimal control seems to fit the 
engineering applications quite well.   
 
On the other hand, TOC designs have several practical 
problems.  First and foremost is the high-speed chattering 
in the control signal that often results in excessive wear 
and tear on control actuators.  The DTOC algorithm 
seems to have resolved this problem.    Another issue is 
that the achievable bandwidth is limited by the noise level 
in the measurement and by dynamic uncertainties in the 
plant, such as the resonant modes.  In practice, the choice 
of bandwidth is usually a result of compromise made 
among several competing design goals, including: 

• performance (command following and 
disturbance rejection); 

• control signal smoothness; and  
• stability in the presence of uncertainties.  
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                     (a) False Switching Scenario      (b)Expanded Switching Surface

Figure 3.1 Switching surface and uncertainties created by sensor noises  
 
A TOC type of controller is especially vulnerable to 
noises because it requires both the output (x1= y) and its 
differentiation (x2= y ) information and x2 is usually not 
available directly. The estimated y from the measurement 
of y is very sensitive to noises in y.  Because of the high 
bandwidth design, using a low pass filter to attenuate the 
noises in y unavoidably degrades the performance of the 
controller.  This noise issue is common in all high 
bandwidth controller designs, and DTOC is without 
exception. 
 
To understand this limitation better, assume that the 
inputs to DTOC are  

 1 1

2 2

1 1 1

2 2 2

,  |

 |

|

, |

x x n

x x n

n m

n m

= + <

= + <
 (3.8) 

where 1x  and 2x  are noise-corrupted version of x1 and x2, 
respectively.  n1 and n2 are noises defined as zero-mean 
random numbers, bounded by m1 and m2, respectively. 
With x=[x1, x2]T=[0 0]T at the origin, (3.8) defines an area 
on the phase plane, as shown in Figure 3.1 as the shaded 
rectangle. 
 
Note that the parallelogram in Figure 3.1 represents the 
switching surface corresponding to the control law of 
(1.4).  For any initial state inside it, (1.4) forces the state 
back to the origin within two sample steps.  Figure 3.1a 
describes a scenario where the noise is too large for the 
DTOC to be effective.  It frequently leads to false 
switching and it makes the control signal unsmooth.  The 
shaded area in Figure 3.1b, represents an acceptable 
uncertainty in x that is well contained within the 
switching surface, where the noise-induced uncertainty 
amounts to a small part.  Therefore, the control signal will 
not make a sudden big change due to noises.   
 
Design Trade-offs 
In a linear control design, a common approach is to 
reduce the loop bandwidth in the face of uncertainties in 
the measurement and in the dynamics.  The reasoning can 
be rigorously established through the frequency response 
of the loop gain, which is the basis of the loop-shaping 

design. For DTOC, the trade-offs between its 
aggressiveness and the smoothness of the control signal 
can be made as follows: 

1) Using a low pass filter to reduce noises in x; 
2) Enlarge the regions in (1.4) so that the noises do 
not cause the bang-bang control action; 
3) A combination of 1) and 2). 

 
The first option is a common one where low pass filters 
are used to filter out part of the high frequency noises.  
The main drawback of this is the additional phase lag that 
accompanies the low pass filters, which limits the 
performance and reduces the stability margins.  Note that 
the parallelogram in Figure 3.1 is defined by the four 
points:  

{a2=
23

2

h r

hr−

 
 
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, a-2=
23

2

h r

hr
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, b2=
2

0

h r− 
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 

, b-2=
2

0

h r 
 
 

} 

If h and r are treated as controller parameters to be tuned, 
then the region can be enlarged by increasing either or 
both parameters.  Let 

 r

h

r k r

h k h

=

=
 (3.9) 

and replace r and h in DTOC law in (3.5) with r  and h , 
respectively, we have 

 1 2
1 (( , , , )

r

u fst x x br h
bk

=  (3.10) 

Here kr and kh are considered filter coefficients.  It was 
observed in practice that setting kr=1 and adjusting kh as 
the only tuning parameter is a simple and effective tuning 
method. 
 
IV. A Motion Control Case Study 
 
Consider a motion control test bed as shown in Figure 4.1.  
The mathematical model of the motion system was 
derived and verified in hardware test, as 
 ( 1.41 23.2 ) 23.2

d
y y T u= − + +  (4.1) 

where y is the output position, u is the voltage signal sent 
to the power amplifier that drives the motor, and Td is the 
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torque disturbance.  The design objective is to rotate the 
load one revolution in one second with no overshoot. A 
trapezoidal motion profile is used to provide the desired 
trajectory for the output of the plant to follow. Here the 
physical characteristics of this control problem are 1) 
|u|<3.5 volt, 2) the sampling rate is 1 kHz, 3) there could 
be a torque disturbance up to 10% of the maximum 
torque, 4) the noise level in the control signal should be 
within ±100mV in the presence of sensor noise.   
 

 
Figure 4.1 The Motion Control Plant 

 
In motion control applications, the common solution is a 
linear proportional-derivative (LPD) controller of the 
form  
 ( ) ( )p du k r y k y= − + −  
Assuming the mathematical model of the plant is known, 
i.e., the parameters of (2.13) are given, the LPD gains can 
be selected as [17] 

 
2.086  and .061(2 1)p c d ck kω ω= = −  

which results in a closed-loop transfer function of 

 
2

2 ( )
( )

c
cl

c

G s
s

ω
ω

=
+   

Here,  
  ωc =60 rad/sec  
is selected as the maximum bandwidth achievable, subject 
to the condition that noise level in the control signal is 

within 100 mV. Furthermore, to avoid noise corruption of 

the control signal, an approximate differentiator 2( 1)
s

sτ +
 

is applied with a corner frequency of 10ωc selected so that 
the approximation of the differentiator does not introduce 
problematic phase delays at the crossover frequency. That 
is τ=1/(10ωc).  The approximate differentiator is used for 
both the PD and the DTOC controllers.  To make the 
comparison fair, the DTOC parameters are selected so 
that the noise level in the control signal is the same as that 
of the LPD controller. Here, the DTOC parameters are 
selected as kr=10, kh=2, τ=.001.  The performance of both 
controllers is demonstrated in Figure 4.2.  The desired 
trajectory of the output is given based on a trapezoidal 
motion profile.  A sinusoidal torque disturbance of 2Hz is 
introduced at t=1.5 sec.   
 
The simulation results show that the tracking error of 
DTOC is over a hundred times smaller than that of LPD 
during the transient period and in disturbance rejection 
where the error is more than three times smaller.   
 
Remarks 
DTOC, in a way, is a nonlinear proportional-derivative 
controller (NPD).  This comparison is fair because both 
controllers are “optimal”. DTOC is optimal, of course, 
inherently, and the LPD is optimal in the sense that its 
bandwidth is maximized subject to design constraints. 
They share the disadvantage of any PD controller in terms 
of requiring the differentiation of the output signal and are 
therefore sensitive to output noises.  Another common 
problem with a PD controller is its difficulty in 
eliminating the steady state errors completely in the 
presence of disturbances.  This steady error is not obvious 
when the sensor noise level is low and the controller can 
be designed aggressively.  The above example shows that 
with the same sensor noise level, DTOC provides a better 
solution. 
 

 

 
Figure 4.2 Comparison of DTOC and LPD in a motion control application 
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V. An Application to Computer Hard Disk Drive  
 
The position control in a computer hard disk drive is one 
of the most challenging problems in motion control.  Five 
characteristics set it apart from other applications: 1) high 
following accuracy; 2) high seek speed; 3) resonant 
modes; and 4) position and torque disturbances; 5) power 
amplifier output saturation. The first two are obvious and 
3) is due to the fact that the hard disk drive assembly 
(HDA) is made light, therefore flexible, in order to move 
it fast.  This creates over a hundred resonant modes but 
only a few of them affect the control performance 
significantly [18, 19]. The accuracy requirement also 
dictates that the motion control system has superior 
disturbance rejection capabilities. 
 
The mathematical model for the HDA is approximately 
  ( )

( / )
v y

d
fr ic

K K
H s

s s K m+
 (5.1) 

where the output is the position, the input is the motor 
current, Ky is the position measurement gain, Kv=Kt/m is 
the acceleration constant, Kfric is the viscous friction 
coefficient, and m is the moving mass of the actuator.  
Hd(s) represents the dynamics from the resonant modes  

  
28

2 2 1
2 2

1

( )
2

j j j j
d

j j j j

b s b
H s

s s
ω ω

ω ξ ω
−

=

+
=

+ +∑  (5.2) 

 where ωj is the resonance frequency, ξj is the damping 
ratio, and bj is the coupling coefficient.  
 
In conventional HDD servo systems, Mode Switching 
Control (MSC) is mostly employed (see [18] and 
references therein), which consists of two different 
control schemes to achieve both short seek-time and 
satisfactory track-following performance. With the HDD 
evolving towards smaller size, larger volume and faster 
access speed, current HDDs using the combination of 
classical control techniques can no longer meet the 
increasing performance requirements. 
 
A Time Optimal Unified Servo Controller (TOUSC) is 
proposed in [18] based on the DTOC concept described 
above.  Ignoring the friction and resonant modes, the 
plant in (5.1) is treated as a double integrator and the 
control law (1.4) is applied.  To estimate the x2 in (1.1), 
the current estimator from [19] is applied.  The system 
configuration is shown in Figure 5.1. Interested readers 
are referred to [18] for details on the plant and the 
controller. 

MUX TOUSC Hard Disk
Drive PlantS/H

S/H

-

Current
Estimator

-1

ê

ê v̂

ŷ

yuspy

Figure 5.1 TOUSC Configuration 
 

The simulation results based on a 13kTPI industrial HDD 
plant are shown in Figure 5.2 and 5.3, where the setpoint 
is 10,000 tracks. 
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Figure 5.2 Position response of the TOUSC 
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Figure 5.3 Motor current and Power Amplifier voltage  

 
 
Remarks: 
 
There are several remarkable characteristics of TOUSC: 
1) Only one controller is needed (which is why the new 

method is called unified) ; 
2) The accuracy is extremely high (Figure 5.2) 
3) There is no overshoot, as expected from a time 

optimal control law; 
4) Smooth motor current ( which means less wear and 

tear for the motor); 
5) The control design is very simple;  The controller is 

designed for a double integrator but the simulation 
was carried out with a full simulation model that 
includes friction and unmodeled dynamics (resonant 
modes). 

6) The tuning is straightforward. With the observer (i.e 
the current estimator in Figure 5.1) properly setup, 
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there is only one tunable control parameter (kh) here 
with kr fixed at kr=1. 

7) The current estimator from [19] plays a crucial role 
here in providing an estimation of x2 in (1.1) with 
minimum phase lag. 

 
VI. Concluding Remarks  
 
A new time optimal control law is evaluated in this paper 
for its performance and practicality.  Design and tunings 
issues are addressed. Special attention is paid to practical 
issues such as noise handling and disturbance rejection.  
The advantages and disadvantages of this nonlinear 
proportional-derivative control law are demonstrated in 
motion control applications. This new time optimal 
control law resolves the long standing issue of chattering 
in the control signal and is, therefore, much more 
practical than the well-known bang-bang control solution.   
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