
Distributed Fault Tolerance in
Optimal Interpolative Nets

Dan Simon, d.simon@ieee.org
Cleveland State University

1960 East 24th Street
Department of Electrical Engineering

Stilwell Hall Room 332
Cleveland, OH 44115

ABSTRACT

The recursive training algorithm for the Optimal Interpolative (OI) classi¯cation network

is extended to include distributed fault tolerance. The conventional OI Net learning

algorithm leads to network weights that are nonoptimally distributed (in the sense of

fault tolerance). Fault tolerance is becoming an increasingly important factor in hardware

implementations of neural networks. But fault tolerance is often taken for granted in

neural networks rather than being explicitly accounted for in the architecture or learning

algorithm. In addition, when fault tolerance is considered, it is often accounted for using

an unrealistic fault model (e.g., neurons that are stuck on or o® rather than small weight

perturbations). Realistic fault tolerance can be achieved through a smooth distribution of

weights, resulting in low weight salience and distributed computation. Results of trained

OI Nets on the Iris classi¯cation problem show that fault tolerance can be increased with

the algorithm presented in this paper.

Keywords: Optimal interpolative net, fault tolerance, constrained optimization, reg-

ularization.

1

I INTRODUCTION

One of the di±culties that a neural net trainer often faces is deciding how many

neurons to use in the network. If too many neurons are used, training time may be

much longer than necessary, and the resultant network may have poor generalization

properties [1]. If too few neurons are used, the learning algorithm may not converge to a

suitable con¯guration. It is clearly desirable to use a training method which intelligently

and automatically generates the optimal number of neurons [2, 3].

One solution to this di±culty is the Optimal Interpolative (OI) Net [4]. The OI Net

is a three layer classi¯cation network that grows only as many middle layer neurons as

necessary to correctly classify the training set. The e±cient recursive learning procedure

presented in [5, 6] makes the OI Net an attractive architecture.

In the present paper we extend the OI Net learning algorithm to include distributed

fault tolerance. Biological systems are inherently fault tolerant due to the distributed

nature of computation and information representation [7]. Fault tolerance has also been

touted as an inherent property of arti¯cal neural systems. But this has often been taken

for granted rather than being explicitly provided for in the learning method. Rather than

being an inherent property of all neural networks, fault tolerance is a feature that will

generally result only if explicitly accounted for in the architecture or learning algorithm.

Various schemes have been proposed to increase fault tolerance in neural networks [8].

The more popular approach has been to train with neurons stuck on or stuck o® during

learning to give the network a greater ability to withstand such faults during operation [9].

This is the approach taken in [10] to incorporate fault tolerance into the OI Net learning

algorithm. However, neurons that are stuck on or stuck o® do not represent a realistic

model of neural network faults. A more realistic model is small perturbations of the

network weights from their trained values [11]. It has been suggested that for analog

VLSI implementations of neural networks, the network weights will be inherently limited

to a relative precision of up to 1% [12]. This will be the result of such things as component

2

mismatch and changes in component threshold voltages. For digital implementations the

relative precision of network weights will be limited by bit resolution. Many implemented

hardware functions are approximations of desired mathematical functions, and tradeo®s

need to be made between the need for functional accuracy and other factors (e.g., silicon

area and manufacturing costs). Errors in hardware implementations of neural networks

inevitably occur and are generally in the form of small signal perturbations, including

weight errors.

It is therefore on this type of error that we concentrate in this paper|small weight per-

turbations rather than stuck neurons. This is the di®erence between the results presented

in [10] and the results presented in this paper. The former paper gives tolerance to \hard"

faults (i.e., faults that consist of neurons that are stuck on or stuck o®). The present

paper gives tolerance to \soft" faults (i.e., faults that consist of small signal perturbations

at the neurons). A training algorithm that spreads the weights evenly throughout the

network would lead to a useful and realistic fault tolerance. In this paper we explicitly

attempt to distribute the weights evenly throughout the network and thus account for

fault tolerance in the OI Net training algorithm. Section II reviews the architecture of

the OI Net, and Section III provides a theoretical basis for distributed fault tolerance in

the OI Net. Section IV presents a recursive learning algorithm for a fault-tolerant OI Net.

Section V presents some simulation results, and Section VI presents concluding remarks.

II THE OPTIMAL INTERPOLATIVE NET

Suppose we are given a training set with q sets of input/output pairs. Each of the q

i n i mtraining inputs x 2 R maps into one of m classes C . Let y 2 R be the desired outputj

i i i icorresponding to x . The output y is de¯ned as x 2 C =) y = ± , where ± is thej j j

m-dimensional vector containing all zeros except for the jth element, which is one.

The OI Net consists of three layers of neurons. The ¯rst layer has n neurons, one for

each component of the input. The second layer has p neurons, where p is a number which

3

is chosen during training. The third layer has m neurons, one for each component of the

output. The weight from the ith input neuron to the jth middle layer neuron is given by

i nthe element in the ith row and jth column of the n£ p matrix V . The vectors v 2 R ,

which comprise the columns of V , are called prototypes and are chosen from the training

set inputs during the learning procedure. The activation function at each middle layer

neuron is given by Á(s) = exp(s=½) where ½ is a learning constant chosen by the user.

The weight from the jth middle layer neuron to the kth output layer neuron is given by

W , where W is the weight matrix to be chosen during training by solving the followingjk

minimization problem.

T T ¡1 T p£mmin k Y ¡W G k=)W = (GG) GY 2 R (1)
W

where k ¢ k refers to the Frobenius norm of a matrix (which is the square root of the sum

T ¡1of the squares of each matrix element), and (GG) G is the classical pseudo-inverse of

T i i jG [13]. y is the ith column of the m£q matrix Y . Á(v ; x) (where (¢; ¢) denotes the dot

product of two vectors) is the element in the ith row and jth column of the p£ q matrix

iG. A training input is included as a prototype (one of the v vectors) only if it does not

Tinduce ill conditioning in GG . This reduces the number of prototypes, and hence limits

the number of middle layer neurons in the network.

A given exemplar is included in the minimization problem of (1) only if it cannot

be correctly classi¯ed by the network which has been trained up to that point. Those

i iexemplars which are included as an (x ; y) pair in Y andG are referred to as subprototypes.

So Y becomes an m £ l matrix, and G becomes a p £ l matrix, where l is the number

of subprototypes chosen from the training inputs. The training algorithm is such that

p · l · q. Figure 1 shows a graphical representation of the OI Net. See [5, 10] for further

details.

III FAULT TOLERANCE

As discussed in Section I, much of the literature on the subject of fault tolerance deals

4

with neurons that are stuck on or stuck o®. A more realistic picture of neural network

faults, however, is imprecision in the network's weights. It has been suggested that analog

VLSI implementations of neural networks are inherently limited to a relative precision

of about 1% [12]. In order to protect against hardware imprecision in the operation of a

neural network, we can spread the computation throughout the network in such a way that

the e®ect of an error in any given weight is minimized. This can be done by attempting

to give each weight approximately the same magnitude. This idea is captured in the

investor's mantra of diversi¯cation and in the maxim \Don't put all your eggs in one

basket."

There is currently no standard method of implementing neural networks in hardware.

A neural net may be implemented with digital electronics, analog electronics, or optics.

One way that a neural network can be implemented in hardware results in the weights

being stored in the processing elements [14, 15]. An OI Net has n + p + m processing

elements, where n is the number of inputs, p is the number of middle layer neurons, and

m is the number of outputs (see Fig. 1). So if there is some hardware imprecision at one

of the processing elements, that would be equivalent to imprecision in all of the weights

connected to that processing element. Looking more closely at Fig. 1, for example, it can

be seen that hardware imprecision at the y processing element would be equivalent to1

imprecision in all of the W weights (i = 1; : : : ; p). In other words, imprecision in thei1

¯rst output processing element is equivalent to imprecision in the ¯rst column of the W

weight matrix. Similarly, imprecision in the jth output processing element is equivalent

to imprecision in the jth column of the W weight matrix. Likewise, imprecision in the

kth middle layer processing element is equivalent to imprecision in the kth row of the W

weight matrix.

These equivalences can be seen from Fig. 1 to be exact. For example, if the hardware

of the jth output processing element exceeds its nominal value by 1%, that is exactly

equivalent to each element in the jth column of theW weight matrix exceeding its nominal

value by 1%. Similarly, if the hardware of the kth middle layer processing element is 1%

5

below its nominal value, that is exactly equivalent to each element in the kth row of the

W weight matrix being 1% below its nominal value.

It can therefore be seen that in order to achieve fault tolerance in a hardware imple-

mentation of an OI Net we can attempt to train the network in such a way that the sum

of each row of the weight matrix W is equal, and the sum of each column of W is also

equal. Then if some imprecision occurs in one of the middle layer processing elements, its

e®ect will be minimized on the operation of the network because the other rows of the

weight matrix will be able to take up the slack more easily. Likewise, if some imprecision

occurs in one of the output layer processing elements, its e®ect will be minimized on the

operation of the network because the other columns of the weight matrix will be able to

take up the slack more easily. If we train the OI Net without taking processing element

errors into account, then if imprecision occurs at a processing element that corresponds

to a \large" row or column of W , the operation of the network will be strongly a®ected.

This sounds something like classical regularization techniques, such as weight decay,

pruning, input perturbation, and weight smoothing [16]. However, in this paper we are

neither trying to reduce the complexity of a network nor are we trying to improve the

generalization properties of the network. Those objectives are already satis¯ed by the

standard OI Net. In this paper we are speci¯cally trying to improve network performance

in the presence of the particular types of hardware imprecisions described above. Regu-

larization techniques (in general) do not improve this type of fault-tolerance, as will be

shown in Section V.

A Output Layer Fault Tolerance

As discussed above, we can attempt to achieve output layer fault tolerance by keeping

the sum of all of the columns of W equal. This can be viewed as a constraint on the OI

Net optimization problem. In Section II we said that W was determined as the solution

Tto the optimization problem min k Y ¡W G k. In order to introduce output layer fault

tolerance into W we can constrain the problem as follows.

6

pX
Tmin k Y ¡W G k subject to W = K (j = 1; : : : ;m) (2)ij c

W
i=1

where K is a constant to be determined. In other words, we want to perform the originalc

optimization problem except with the constraint that the solution W is such that the sum

of each column is the same. This constrained optimization problem can be written as

Tmin k Y ¡W G k subject to LW = C ´ [K ¢ ¢ ¢K] (3)c c
W

where L is a 1 £ p matrix where each element is a 1, and C is a 1 £ m matrix. This

^constrained optimization problem has been solved in [17]. If W is the solution of the un-

~constrained optimization problem (1), then the solutionW of the constrained optimization

problem (3) is given as

T ¡1 T T ¡1 T ¡1~ ^ ^W = W ¡ (GG) L [L(GG) L] (LW ¡C) (4)

The solution of the constrained optimization problem consists of the solution of the un-

constrained problem plus a correction term. L is a 1£ p matrix, where p is the number of

T ¡1 Tprototypes in the OI Net. Therefore L(GG) L is a scalar and its inversion in (4) is not

Ta computational issue. (Although the inversion of the p£p matrixGG is a computational

issue, it will be dealt with later in this paper.) K in (2) is the constraint that we arec

enforcing on the sum of the columns of the W matrix. The following theorem guarantees

that appropriate values of K will improve the output layer fault tolerance of the OI Net.c

Theorem 1 Denote by ê the change of the unconstrained OI Net solution (1) due to anc

error in one of the output layer nodes. Similary, denote by ~e the change of the constrainedc

OI Net solution (4) due to the same error. Then, for su±ciently large values of K , thec

upper bound of ~e is smaller than ê .c c

The proof is provided in the appendix. Note that this theorem does not address the fault-

free performance of the OI Net. Neither does it state that the constrained OI Net solution

changes less (due to output layer errors) than the unconstrained OI Net solution; it states

7

only that this relationship holds between the upper bounds of the changes. However, the

theorem does give us some con¯dence that the constrained OI Net will indeed be more

tolerant to output layer faults than the unconstrained OI net. This is similar to H1
control, where the control objective is to minimize the upper bound of the e®ect of noise

on a performance criterion [18].

B Middle Layer Fault Tolerance

As discussed above, we can attempt to achieve middle layer fault tolerance by keeping

the sum of all of the rows of W equal. This can be viewed as a constraint on the OI Net

optimization problem. In Section II we said that W was determined as the solution to

Tthe optimization problem min k Y ¡W G k. In order to introduce middle layer fault

tolerance into W we can constrain the problem as follows.

mX
Tmin k Y ¡W G k subject to W = K (i = 1; : : : ; p) (5)ij r

W
j=1

where K is a constant to be determined. In other words, we want to perform the originalr

optimization problem except with the constraint that the solution W is such that the sum

of each row is the same. This constrained optimization problem can be written as

T Tmin kY ¡W Gk subject to MW = N ´ [K ¢ ¢ ¢K] (6)r r
W

where M is a 1 £m matrix where each element is a 1, and N is a 1 £ p matrix. This

^constrained optimization problem has been solved in [17]. If W is the solution of the un-

~constrained optimization problem (1), then the solutionW of the constrained optimization

problem (6) is given as

T T T ¡1~ ^ ^W = W ¡ (WM ¡N)(MM) M (7)

The solution of the constrained optimization problem consists of the solution of the uncon-

strained problem plus a correction term. (Note that in [17] a weighting matrix V is part

of the constrained optimization solution. In our implementation we choose V to be equal

8

Tto the identity matrix; that is, we attach equal important to each element of Y ¡W G

in (6)). M is a 1 £m matrix, where m is the dimension of the output vector of the OI

TNet. Therefore MM is a scalar equal to m and its inverse in (7) is simply equal to 1=m.

K in (5) is the constraint that we are enforcing on the sum of the rows of the W matrix.r

The following theorem guarantees that appropriate values of K will improve the middler

layer fault tolerance of the OI Net.

Theorem 2 Denote by ê the change of the unconstrained OI Net solution (1) due to anr

error in one of the middle layer nodes. Similary, denote by ~e the change of the constrainedr

OI Net solution (7) due to the same error. Then, for values of K with su±ciently smallr

magnitude, the upper bound of ~e is smaller than ê .r r

The proof is provided in the appendix. Note that (as in Theorem 1) this theorem does not

address the fault-free performance of the OI Net. Neither does it state that the constrained

OI Net solution changes less (due to middle layer errors) than the unconstrained OI Net

solution; it states only that this relationship holds between the upper bounds of the

changes. However, the theorem does give us some con¯dence that the constrained OI Net

will indeed be more tolerant to middle layer faults than the unconstrained OI net.

C General Fault Tolerance

Attempting to both keep the sum of all of the rows of W equal and the sum of all of the

columns of W equal can be viewed as a generalization of the two preceding sections. We

can constrain the problem of Section II as follows.

Tmin k Y ¡W G k subject to (8)
W

p mX X
W = K (j = 1; : : : ;m) and W = K (i = 1; : : : ; p)ij c ij r

i=1 j=1

whereK andK are constants that satisfy the conditions of the two preceding subsections.c r

In other words, we want to perform the original optimization problem except with the

9

constraints that the solution W is such that the sum of each column is the same and the

sum of each row is the same. The constrained optimization problem can be written as

Tmin k Y ¡W G k subject to (9)
W

TLW = C ´ [K ¢ ¢ ¢K] and MW = N ´ [K ¢ ¢ ¢K]c c r r

where L is a 1 £ p matrix where each element is a 1, M is a 1 £m matrix where each

element is a 1, C is a 1£m matrix, and N is a 1£p matrix. This constrained optimization

^problem has been solved in [17]. If W is the solution of the unconstrained optimization

~problem (1), then the solution W of the constrained optimization problem (9) is given as

T ¡1 T T ¡1 T ¡1 T T T ¡1~ ^ ^ ^W = W ¡ (GG) L [L(GG) L] (LW ¡ C)¡ (WM ¡N)(MM) M+

T ¡1 T T ¡1 T ¡1 T T ¡1^(GG) L [L(GG) L] (LW ¡C)M (MM) M (10)

The solution of the constrained optimization problem consists of the solution of the un-

constrained problem plus some correction terms. (As in the preceding subsection, we note

that in [17] a weighting matrix V is part of the constrained optimization solution. In our

implementation we choose V to be equal to the identity matrix; that is, we attach equal

Timportance to each element of Y ¡W G in (9)).

The preceding two subsections indicate that K should be a large positive numberc

and K should be a number with small magnitude (like zero). At this point we do notr

have analytical proof that the constrained OI Net solution is more fault tolerant than the

unconstrained solution. But the reasonableness of the approach, along with the theorems

of the preceding two subsections, give us a high degree of con¯dence that the use of (10)

will improve the fault tolerance of the OI Net.

IV THE FAULT-TOLERANT LEARNING

ALGORITHM

In this section we extend the recursive OI Net learning algorithm [5, 6] to include the

distributed fault tolerance described in the previous section. The algorithm presented here

10

is based on [5], so this paper presents only the di®erences between the algorithm in [5] and

the fault-tolerant algorithm. The notation used in the learning algorithm is summarized

in Table 1.

1. Initialization.

This step is just as described in [5], with the addtional equation

l l l~W = W + (W ¡ C)(1 ¡ I)m;m mp p p

where C is given as indicated in Section III and I denotes the m £ m identitym

~matrix. W is derived from (10), but it has a very simple form here because of the

small initial dimension of the problem (l = p = 1). The initial training error due to

l lW should be initialized as E = 0.p p

2. Main Recursion.

l+1AfterW is computed as described in Equation (20) in [5], we solve the constrainedp

minimization problem

T l+1 Tmin k Y ¡W G k subject to LW = C and MW = N (11)l+1 p
W

where C and N are given as indicated in Section III. The discussion following (9)

shows that this problem can be solved as

l+1 l+1 l+1 ¡1 l+1 ¡1 ¡1 l+1~W = W ¡ (R) 1 [1 (R) 1] (1 W ¡ C)¡p;1 1;p p;1 1;pp p p p p

l+1 T(W 1 ¡N)1 =m+m;1 1;mp

l+1 ¡1 l+1 ¡1 ¡1 l+1(R) 1 [1 (R) 1] (1 W ¡ C)1 =m (12)p;1 1;p p;1 1;p m;mp p p

l+1We next consider including z as a prototype. Two constants chosen by the user,

l+1° and ° , determine whether z is used as a prototype. ° is chosen to prevent1 2 1

ill conditioning in the weight determination procedure; it should be chosen on the

basis of the numerical precision of the computer on which this algorithm runs. °2

is chosen as a network complexity parameter since it determines the number of

11

prototypes (and hence the number of middle layer neurons). A large ° will reduce2

the complexity of the network. That is, a large ° will improve the generalization of2

the network by decreasing the network variance and increasing the bias. A small °2

will improve the performance of the network on the training data at the probable

expense of generalization capability. That is, a small ° will increase the network2

variance and decrease the bias [1]. If the two conditions involving ° and ° given1 2

l+1by Equations (36) and (41) in [5] are satis¯ed, we compute W as described in [5].p+1

We then solve the constrained minimization problem

l+1T Tmin k Y ¡W G k subject to LW = C and MW = N: (13)l+1 p+1
W

where C and N are given as described in Section III. The discussion following (9)

shows that this problem can be solved as

l+1 l+1 l+1 l+1 l+1¡1 ¡1 ¡1~W = W ¡ (R) 1 [1 (R) 1] (1 W ¡ C)¡p+1;1 1;p+1 p+1;1 1;p+1p+1 p+1 p+1 p+1 p+1

l+1 T(W 1 ¡N)1 =m+m;1 1;mp+1

l+1 ¡1 l+1 ¡1 ¡1 l+1(R) 1 [1 (R) 1] (1 W ¡ C)1 =m (14)p+1;1 1;p+1 p+1;1 1;p+1 m;mp+1 p+1 p+1

l+1We then augment the subprototype z to the prototype matrix V and the sub-

prototype matrix Z, and increment p and l by one to re°ect the addition of a new

prototype and subprototype.

If the two conditions involving ° and ° given by Equations (36) and (41) in [5] are1 2

l+1 l+1not both satis¯ed then z cannot be included as a prototype. We augment z

to the subprototype matrix Z and increment l by one to re°ect the addition of a

new subprototype.

3. Reiterate.

This step is the same as described in [5].

Step (2) executes q ¡ 1 times at the most [5].

12

V SIMULATION RESULTS

We tested the algorithm of the previous section on the classic Iris classi¯cation prob-

lem [20]. Each Iris input has four features and is classi¯ed into one of three categories.

The Iris data contains 50 examplars from each category for a total of 150 patterns. We

normalized the features to values between 0 and 0.5. The test environment was MATLAB

code on a Pentium III 550 MHz PC.

The 150 patterns were randomly divided into two equal parts such that 25 patterns

from each class formed a 75-pattern training set, and the remaining 25 patterns from each

class formed a 75-pattern test set. The OI Net was run as described earlier in this paper

¡8with parameters ° = 10 , ° = 0:35, and ½ = 0:5. ° was chosen as an arbitarily small1 2 1

number to prevent ill conditioning in the training algorithm. In this example it was found

that the choice of ° and ½ did not signi¯cantly a®ect the performance of the network.2

For instance, any value of ° between 0:2 and 0:8, and any value of ½ between 0:2 and 0:82

yielded virtually identical results.

The fault-tolerance parameters K and K in Section III were chosen as 1000 and 0c r

respectively. The choice of K is straightforward because Theorem 2 says that we want tor

use a K with a small magnitude. The choice of K is more ambiguous because, accordingr c

to Theorem 1, we want to use a large value. But if we use too large of a value then we may

encounter numerical problems, or the weights of the fault-tolerant network may change so

much relative to the traditional network that fault-free performance will su®er. A value

of 1000 was chosen for K as a large value that is not \too" large.c

The advantage of the OI Net as compared to the backpropagation and nearest neighbor

classi¯cation methods has been documented in previous work [5]. This paper compares

the traditional OI Net with the fault-tolerant OI Net. The OI Nets were simulated with

weight perturbations at the middle layer neurons and output neurons. The classi¯cation

rate was obtained by perturbing the weights at each of these p + m neurons by a given

percentage, one neuron at a time, and then averaging the resultant p + m classi¯cation

13

rates. This was done for 10 successive runs, where the 75-element training and test sets

were randomly generated each time. The average classi¯cation rates were then averaged

over the 10 simulations. The performance of the traditional OI Net as compared with the

fault-tolerant OI Net for various levels of weight perturbations is depicted in Fig. 2. It

should be noted that these performance results are robust across a wide range of sampling

schemes. The results presented here are essentially the same regardless of the sample

selection (as long as an equal number of samples are selected from each of the three

categories). The results are also the same whether 10 successive runs or 100 successive

runs are used.

A close look at Fig. 2 shows that the fault-tolerant OI Net performs slightly better

than the traditional OI Net even in the case where the weight perturbations are zero. The

regularization introduced by fault tolerance results in slightly better generalization even

though the fault-tolerant weights are theoretically \less optimal" than the traditional

weights. But more importantly, Fig. 2 shows that the fault-tolerant network performs

considerably better than the traditional network in the presence of the type of weight

perturbations that could be expected in a hardware implementation. The performance

of the fault-tolerant network does drop o® as the magnitude of the faults increases, but

the drop-o® is less severe than for the traditional network. This is in accordance with

Theorems 1 and 2.

Fault-tolerant training results in a network with fewer middle layer neurons than regu-

lar training (an average of 5.1 prototypes versus 7.4 prototypes). Building fault tolerance

into the network can be viewed as protecting the network from noisy data, which leads

to improved generalization properties. It has been suggested that smaller networks result

in improved generalization [2, 3], so the reduction in network size due to fault-tolerant

training is not unexpected.

The standard deviation of the weights between the middle layer neurons and output

neurons was 12 for the fault-tolerant OI Net, while the standard deviation was 312 for

the traditional OI Net. These numbers show how successful the fault-tolerant training

14

algorithm is at evenly distributing the weights throught the network.

The computational e®orts of the two OI Net training algorithms are comparable. The

fault-tolerant algorithm consists of the standard algorithm plus some correction terms, but

the correction terms add a negligible amount of computational e®ort. However, the fault-

tolerant algorithm is slightly more expensive computationally because of the increased

number of training iterations. In the Iris example discussed in this section, the standard

algorithm required an average of 0:15 s of CPU time and 4:3 learning steps (i.e., Step (2)

in Section IV executed an average of 4:3 times). The fault-tolerant algorithm required

an average of 0:18 s of CPU time and 5:3 learning steps. This increased number of

iterations (and hence CPU time) can be inferred from a careful examination of the training

algorithm. The addition of fault-tolerance reduces (on average) the fault-free performance

of the network relative to the training data. This results in more iterations of Step (2) of

the training algorithm before all of the training exemplars can be correctly classi¯ed by

the network. Another way of stating the same thing is that the fault-tolerant algorithm

requires more subprototypes in the optimization problem in order to correctly classify all

of the training data. The average number of subprototypes was 15.9 for fault-tolerant

training and 14.6 for traditional training.

As indicated in Section III, this sounds something like classical regularization tech-

niques for improving the generalization of a neural network. We explored this possible

equivalence by simulating the standard OI Net training algorithm with various levels of

training noise [21]. Figure 3 shows the performance of the network trained with vari-

ous levels of input perturbations. (The percentages show the standard deviation of the

randomly generated input noise as a percentage of the ranges of each network input pa-

rameter.) Figure 3 shows that input perturbation does not improve the fault tolerance of

the network. So general regularization techniques do not help the OI net for the speci¯c

types of faults considered in this paper.

However, the fault-tolerant OI net in this paper can be viewed as a special purpose

regularization algorithm. It is a regularization algorithm because it imposes some structure

15

on the network weights. It is a special purpose regularization algorithm because the

imposed structure is speci¯cally designed to minimize the e®ect of particular types of

faults. As such, it can be expected that the fault-tolerant OI net would exhibit more bias

in capturing the desired data structure, but less variance. This has been found to be true

via simulation results. The integrated bias, variance, and total error were approximated

by a Monte Carlo procedure as described in [1].

NX1 2¹Bias ¼ jf(x)¡ y j (15)l l
N

l=1

N MX X1 1 k 2¹Variance ¼ jf(x ;D)¡ f(x)j (16)l l
N M

l=1 k=1

N MX X1 1 k 2Total Error ¼ jf(x ;D)¡ y j (17)l l
N M

l=1 k=1

In the above equations, N is the number of test exemplars (75 in our example) and

M is the number of training sets that were used to approximate the above quantities

(50 in our example { i.e., we executed 50 training/test cycles). For each training/test

cycle, we trained with a di®erent 45-element subset of the 75 training exemplars. In the

kabove equations, f(x ;D) is the response to the lth test input of the OI Net that wasl

¹trained with the kth training set. f(x) is the average response to the lth test input.l

y is the desired response to the lth test input. The total error is equal to the sum ofl

the bias and the variance. As the form of a neural network becomes more constrained

(e.g., by having less parameters), the bias increases and the variance decreases. In our

Iris example, the regular OI net had a bias, variance, and total error equal to 0.16, 0.22,

and 0.38. The fault-tolerant OI net had values equal to 0.60, 0.09, and 0.69. So the

introduction of fault-tolerance increased the bias and the total error, but decreased the

variance of the network. The bias increase and variance decrease are expected because we

are essentially adding more constraints to the network. The surprising part of these results

is that the fault-tolerant network performs better even though the total error is larger.

This underscores the fact that a network with a larger error might perform better than

16

a network with a smaller error. It may be that variance is more important for network

performance than total error. This could be true if, as in the results of this section, the

underlying problem is a classi¯cation problem rather than an interpolation problem. For

a classi¯cation problem we may get better results if the solution surface is more smooth,

even if we have more total error. This analysis, along with the simulation results of this

section, indicates that fault-tolerant training may be more appropriate for classi¯cation

problems than interpolation problems. In fact, the OI Net was originally proposed as a

solution to classi¯cation problems [5].

The MATLAB m-¯les that were used to generate the results presented in this paper

can be downloaded from the world-wide web at

http://academic.csuohio.edu/simond/oinet/. A user who re-runs the experiments

presented here can expect to get similar results, although the results will not be identical

because of the random generation of training sets and test sets.

VI CONCLUSION

A recursive learning algorithm for a fault-tolerant Optimal Interpolative Net has been

presented. The inclusion of fault tolerance makes the network more robust to small pertur-

bations in the weights, such as those that might occur in a hardware implementation. The

resultant network contains fewer hidden layer neurons and hence decreases the complexity

of the network. The fault tolerance discussed in this paper applies to small perturbations

of the weights between the middle layer and the output layer.

The fault-tolerant OI Net has been applied to the classic Iris data. The results show

that not only is fault tolerance greatly increased but nominal performance slightly improves

also. This is because the introduction of fault tolerance can be viewed as protecting

the network against noisy data and hence improving the generalization properties of the

network. The MATLAB code used in this research can be downloaded from the world

wide web at http://academic.csuohio.edu/simond/oinet/.

17

This research is limited to tolerance to imprecision in the middle layer and output

layer neurons. Further research along these lines is focusing on tolerance to imprecision

in the input layer neurons, and the generalization of Theorems 1 and 2.

ACKNOWLEDGEMENTS

The comments and suggestions of the Associate Editor and three anonymous referees

were instrumental in signi¯cantly strengthening this paper from its original version.

18

APPENDIX

Theorem 1 Proof: Theorem 1 states that for su±ciently large values of K , the upperc

bound of the change of the constrained OI Net solution (4) due to an error in one of the

output layer nodes is smaller than the upper bound of the change of the unconstrained

OI Net solution (1) due to the same error. Recall from (4) that

T ¡1 T T ¡1 T ¡1~ ^ ^W = W ¡ (GG) L [L(GG) L] (LW ¡C) (18)

T ¡1 TWe will use the shorthand notation G = (GG) and ¸ = LGL (note that ¸ is a scalar).

By carrying out the multiplications of (18) we can show that the element in the ith row

~and jth column of W is given by Ã !X X
~ ^ ^W = W ¡ G W ¡K =¸ (19)ij ij ik kj c

k k

Figure 1 and Section II indicate that the nominal output of the OI Net can be written as

Ty = W g. If there is a relative precision error of ± in the rth output processing element,

the output of the OI Net changes from y to y . This precision error is equivalent tor

perturbing the rth column of W . Denote the perturbed weight matrix W as W .r

W = W (I ¡¢) (20)r r

where ¢ is the symmetric m£m matrix that contains all zeros except for the elementr

in the rth row and rth column, which contains ±. So the change in the OI Net solution

due to an output layer node error is given by

T Ty ¡ y = W g ¡W g (21)r r

T T T= [W ¡ (I ¡¢) W]g (22)r

T= ¢ W g (23)r

One reasonable way to measure the size of the change of the OI Net solution is to take

the vector two-norm, which gives

19

Tky ¡ y k = k¢ W gk (24)r r

T· k¢ W k ¢ kgk (25)r

where k ¢ k refers to the two-norm of a vector and the Froebenius norm of a matrix [22,

Tp. 291]. We know that (in general) kAk = kA k. So the above equation becomes

ky ¡ y k · kW¢ k ¢ kgk (26)r r

So kW¢ k provides an upper bound for the change of the OI Net solution due to a relativer

precision error in the rth output processing element. From (19) we can derive the element

~in the ith row and jth column of W¢ asr(P P^ ^±[W ¡ G (W ¡K)=¸] if j = rij ik kj ck k~(W¢) = (27)r ij 0 if j6= r

From this we can obtain " Ã !X X X X
2 2 2~ ^ ^ ^kW¢ k = ± W ¡ 2 W G W ¡K =¸+ (28)r ir cik krir

i i k k 3Ã ! Ã !2 2X X X
2^ 5W ¡K G =¸kr c ik

ik k

~ ^From this we can see that kW¢ k < kW¢ k if the following condition holds.r rÃ ! Ã ! Ã !2 2X X X X X X
2^ ^ ^2 W G W ¡K =¸ > W ¡K G =¸ (29)ir ik kr c kr c ik

i ik k k k

The above condition holds if P P^X 2¸ W Gir iki k^ P PK > W ¡ (30)c kr 2(G)iki kk

So if K in (3) satis¯es (30) for all values of r (r = 1; ¢ ¢ ¢ ;m) then the upper bound ofc

the change of the constrained OI Net solution (4) due to a relative precision error in one

of the output processing elements is smaller than the upper bound of the change of the

QEDunconstrained OI Net solution (1) due to the same error.

20

Theorem 2 Proof: Theorem 2 states that for su±ciently small values of K , ther

upper bound of the change of the constrained OI Net solution (7) due to an error in one of

the middle layer nodes is smaller than the upper bound of the change of the unconstrained

OI Net solution (1) due to the same error. Recall from (7) that

T T T ¡1~ ^ ^W = W ¡ (WM ¡N)(MM) M (31)

By carrying out the multiplications of (31) we can show that the element in the ith row

~and jth column of W is given by Ã !X
~ ^ ^W = W ¡ W ¡N =m (32)ij ij ik

k

Figure 1 and Section II indicate that the nominal output of the OI Net can be written as

Ty = W g. If there is a relative precision error of ± in the rth middle processing element,

the output of the OI Net changes from y to y . This precision error is equivalent tor

perturbing the rth row of W . Denote the perturbed weight matrix W as W .r

W = (I ¡¢)W (33)r r

where ¢ is the symmetric p£ p matrix that contains all zeros except for the element inr

the rth row and rth column, which contains ±. So the change in the OI Net solution due

to a middle layer node error is given by

T Ty ¡ y = W g ¡W g (34)r r

T T T= [W ¡W (I ¡¢)]g (35)r

T= W ¢ g (36)r

One reasonable way to measure the size of the change of the OI Net solution is to take

the vector two-norm, which gives

Tky ¡ y k = kW ¢ gk (37)r r

T· kW ¢ k ¢ kgk (38)r

21

where k ¢ k refers to the two-norm of a vector and the Froebenius norm of a matrix [22,

Tp. 291]. We know that (in general) kAk = kA k. So the above equation becomes

ky ¡ y k · k¢ Wk ¢ kgk (39)r r

So k¢ Wk provides an upper bound for the change of the OI Net solution due to a relativer

precision error in the rth middle processing element. From (32) we can derive the element

~in the ith row and jth column of ¢ W asr(P^ ^±[W ¡ (W ¡N)=m] if i = rij ikk~(¢ W) = (40)r ij 0 if i6= r

From this we can obtain2 0 1 0 1 3X X X X
2 2 2~ ^ ^ ^ ^4 @ A @ A 5k¢ Wk = ± W ¡ 2 W ¡N W =m+ W ¡N =m (41)r rj rj rjrj

j j j j

~ ^From this we can see that k¢ Wk < k¢ Wk if the following condition holds.r r0 12 0 13X X X
^ ^ ^@ A4 @ A5W ¡N 2 W ¡ W ¡N > 0 (42)rj rj rj

j j j

The above condition holds if ¯ ¯ ¯ ¯¯ ¯ ¯ ¯X X¯ ¯ ¯ ¯¯ ^ ¯ ¯ ^ ¯¡ W < N < W (43)rj rj¯ ¯ ¯ ¯¯ ¯ ¯ ¯j j

So if K in (6) satis¯es (43) for all values of r (r = 1; ¢ ¢ ¢ ; p) then the upper bound ofr

the change of the constrained OI Net solution (7) due to a relative precision error in one

of the middle processing elements is smaller than the upper bound of the change of the

unconstrained OI Net solution (1) due to the same error. QED

22

References

[1] S. Geman, E. Bienenstock, and R. Doursat, \Neural Networks and the Bias/Variance

Dilemma," Neural Computation, vol. 4, pp. 1-58, 1992.

[2] E. Karnin, \A Simple Procedure for Pruning Back-Propagation Trained Neural Net-

works," IEEE Transactions on Neural Networks, vol. 1, pp. 239-242, 1990.

[3] B. Hassibi, D. Stork, and G. Wol®, \Optimal brain surgeon and general network

pruning," Neural Networks Theory, Technology, and Applications, P. Simpson, Ed.,

New York: IEEE, 1996, pp. 56-68.

[4] R. deFigueiredo, \An Optimal Matching-Score Net for Pattern Classi¯cation," Inter-

national Joint Conference on Neural Networks, San Diego, California, pp. 909-916,

1990.

[5] S. Sin and R. deFigueiredo, \An Evolution-Oriented Learning Algorithm for the

Optimal Interpolative Net," IEEE Transactions on Neural Networks, vol. 3, pp. 315-

323, 1992.

[6] S. Sin and R. deFigueiredo, \E±cient Learning Procedures for Optimal Interpolative

Nets," Neural Networks, vol. 6, pp. 99-113, 1993.

[7] C. Neti, M. Schneider, and E. Young, \Maximally Fault Tolerant Neural Networks,"

IEEE Transactions on Neural Networks, vol. 3, pp. 14-23, 1992.

[8] P. Edwards and A. Murray (eds.), Analogue Imprecision in MLP Training. Singapore:

World Scienti¯c, 1996.

[9] C. Sequin and R. Clay, \Fault tolerance in arti¯cial neural networks," International

Joint Conference on Neural Networks, pp. 703-708, San Diego, California, 1990.

[10] D. Simon and H. El-Sherief, \Fault-tolerant training for optimal interpolative nets,"

IEEE Transactions on Neural Networks, vol. 6, pp. 1531-1535, 1995.

23

[11] P. Edwards and A. Murray, \Can deterministic penalty terms model the e®ects of

synaptic weight noise on network fault tolerance?" International Journal of Neural

Systems, vol. 6, pp. 401-416, 1995.

[12] P. Edwards and A. Murray, \Penalty terms for fault tolerance," International Con-

ference on Neural Networks, pp. 943-947, Houston, Texas, 1997.

[13] G. Golub and C. Van Loan, Matrix Computations. Baltimore, Maryland: The Johns

Hopkins University Press, 1990.

[14] P. Ienne and M. Viredaz, \GENES IV: A bit-serial processing element for a multi-

model neural-network accelerator," Neural Networks Theory, Technology, and Appli-

cations, P. Simpson, Ed., New York: IEEE, pp. 797-808, 1996.

[15] R. Sridhar and Y. Shin, \VLSI neural network architectures," Neural Networks The-

ory, Technology, and Applications, P. Simpson, Ed., New York: IEEE, pp. 864-873,

1996.

[16] R. Reed, R. Marks, and S. Oh, \Similarities of error regularization, sigmoid gain

scaling, target smoothing, and training with jitter," IEEE Transactions on Neural

Networks, vol. 6, pp. 529-538, May 1995.

[17] T. Chia, P. Chow, and H. Chizek, \Recursive parameter identi¯cation of constrained

systems: an application to electrically stimulated muscle," IEEE Transactions on

Biomedical Engineering, vol. 38, pp. 429-442, May 1991.

[18] J. Burl, Linear Optimal Control. Menlo Park, California: Addison-Wesley, 1999.

[19] L. Ljung and T. Soderstrom, Theory and Practice of Recursive Identi¯cation. Cam-

bridge, Massachusetts: The MIT Press, 1985.

[20] J. Bezdek, J. Keller, R. Krishnapuram, L. Kuncheva, and H. Pal, \Will the real Iris

data please stand up?" IEEE Transactions on Fuzzy Systems, vol. 7, pp. 368-369,

1999.

24

[21] K. Matsuoka, \Noise injection into inputs in back-propagation learning," IEEE Trans-

actions on Systems, Man, and Cybernetics, vol. 22, pp. 436-440, 1992.

[22] R. Horn and C. Johnson, Matrix Analysis. New York, NY: Cambridge University

Press, 1990.

25

Figure 1: Optimal Interpolative Net Architecture.

26

Symbol Meaning
ix training input vector
n dimension of each input vector
A set of all training input vectors
iy training output vector
m dimension of each output vector
q number of training exemplars
iv prototype vector (taken from A)
V matrix containing prototypes

Ŵ unconstrained weight matrix between hidden layer and output layer
~W constrained weight matrix between hidden layer and output layer
p number of prototypes
iz subprototype vector (taken from V)
Z matrix containing subprototypes
l number of subprototypes
lf the neural map based on the p prototypesp

in V and the l subprototypes in Z
° ill conditioning threshold1

° error reduction threshold2

½ learning parameter
1 the r £ q matrix where each element is a 1r;q

Table 1: Optimal Interpolative Net Notation.

27

Figure 2: Average Optimal Interpolative Net Performance. The plot shows the
average percentage of test data correctly classi¯ed. The test data consisted of 75
patterns and the average was taken over 10 simulations.

28

Figure 3: Average Optimal Interpolative Net Performance for six di®ent noise levels
(0%, 1%, 2%, 3%, 4%, and 5%) used during training. The plot shows the average
percentage of test data correctly classi¯ed. The test data consisted of 75 patterns
and the average was taken over 10 simulations.

29

