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In current industrial control applications, the proportionalþ integralþ derivative (PID)

control is still used as the leading tool, but constructing controller requires precise

mathematical model of plant, and tuning the parameters of controllers is not simple to

implement. Motivated by the gap between theory and practice in control problems, linear

active disturbance rejection control (LADRC) addresses a set of control problems in the

absence of precise mathematical models. LADRC has two parameters to be tuned, namely, a

closed-loop bandwidth and observer bandwidth. The performance of LADRC depends on the

quick convergence of a unique state observer, known as the extended state observer, proposed

by Jinqing Han (1994). Only one parameter, observer bandwidth, significantly affects the

tracking speed of extended state observer. This paper studies numerically the optimal fast

tracking observer bandwidth and the absolute tracking error estimation for a class of

non-linear and uncertain motion control problems by finite difference method.

1. Introduction

The growth of digital control is a contemporary nature.
In a digital implementation, the controller collects
samples through the sensor, compares it to the reference
and computes the corresponding input to the plant based
on the control law. The state feedback control laws
require access to all state variables. For those states that
are not directly measured, their estimates, obtained from
a state observer, are used. The problem of observer
design is directed to finding a mechanism to estimate the
unmeasured states from the available output measure-
ments. Consequently, observer design has become a key
factor in control design. Luenberger (1964, 1966, 1971)
introduced the state observer for linear systems, known
as the Luenberger Observer. For a non-linear system,
several methods have been proposed. Misawa and
Hedrick (1989) surveyed some of these methods. The
performance of these observers and the resulting control
system largely depend on the accuracy of the

mathematical model of the plant, which poses a practical

concern. To address this issue, an ingenious observer

system, known as extended state observer (ESO), was

proposed by Han (1989, 1994, 1995), where the states

as well as the uncertainties in the plant are estimated.

This allows the controller to actively compensate for

the uncertainties, and it led to the active disturbance

rejection control (ADRC) (Gao et al. 2001a, b, Wang

et al. 2003, Gao et al. 2004). The strong robustness of the

non-linear ESO (NLESO) has attracted the attention

of authors in recent year (Huang et al. 2001, 2002a, b).

The outstanding performance of NLESO among the

other observers was verified by the experiments.

However, the number of parameters to be tuned, and

the computational burden are still the problem to resolve

in NLESO. By using a linear feedback instead of a non-

linear one, Gao (2003, 2004) and Gao et al. (2001a)

proposed the linear active disturbance rejection control

(LADRC) with linear extended state observer (LESO)

for the single-input single-output (SISO) non-linear

uncertain system. LADRC is easy to use and to tune

because it has only two tuning parameters, namely,*Corresponding author. Email: yau@uic.edu
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the closed-loop bandwidth and the observer bandwidth.
However it requires that LESO converges quickly to
the actual signal. Only observer bandwidth significantly
affects the tracking speed of extended state observer.
In this paper, tracking effectiveness of observer

bandwidth and optimal fast tracking observer band-
width are studied under a set of practical motion control
problems with digital implementation.

2. Preliminary of LADRC

2.1 Practical motion control problem

The modern control deals directly with systems in
ordinary differential equation. In a typical application
using a motor as the power source, the plant equation of
motion can be described as

€yðtÞ ¼ fðt, yðtÞ, _yðtÞ,wðtÞÞ þ bðtÞuðtÞ, ð1Þ

where for all t� 0 the signal y(t) is the position output,
u(t) is the voltage to the power amplifier, b(t) is a time-
varying coefficient, and w(t) represents the unknown
external disturbance such as vibrations and torque
disturbances. The friction, the effect of inertia and
various other non-linearities in a motion system are all
represented by the uncertain function f(�). So, f(�) is a
time-varying function in practical sense. The desired
trajectory of the position is known, and there are many
constraints in motion control design. An example is the
limitation of motor torque, and if the digital controller is
used, which is implemented by a computer, the sampling
frequency is delimited by its electromechanical system.
The term b(t) in (1), which is related to both the inertia
of the object to be moved and the motor torque
constant, usually changes slowly, so that it is continuous
and differentiable.

2.2 Active disturbance rejection control

2.2.1 Han’s active disturbance rejection control (ADRC)

for (1) (Han 1998, Gao et al. 2001a, b):. Consider the
plant dynamics in (1) normalized at b(t)¼ 1 and let f(�)
absorb the discrepancy (b(t)� 1)u(t). Let x1(t)¼ y(t),
x2ðtÞ ¼ _yðtÞ, and

aðtÞ ¼ fðt, x1ðtÞ, x2ðtÞ, uðtÞ,wðtÞÞ: ð2Þ

Then, a state space description of (1) is

_x1ðtÞ ¼ x2ðtÞ

_x2ðtÞ ¼ aðtÞ þ uðtÞ

yðtÞ ¼ x1ðtÞ:

9>=
>; ð3Þ

Let x3(t)¼ a(t) be an additional state variable in (3) and
let hðtÞ ¼ _aðtÞ. The problem of extended state observer

design is to reconstruct the state x2 and the extended
state x3 via u(t) and y(t). The state space description (3)
can be rewritten as

_x1ðtÞ ¼ x2ðtÞ

_x2ðtÞ ¼ x3ðtÞ þ uðtÞ

_x3ðtÞ ¼ hðtÞ

yðtÞ ¼ x1ðtÞ:

9>>>=
>>>;

ð4Þ

The key here is that the state augmentation in (4) allows
a(t) to be estimated as a state x3. The control problem
formulation takes a sharp turn here: instead of trying to
find fðt, yðtÞ, _yðtÞ, uðtÞ,wðtÞÞ in system identification,
estimates it and compensates for it in real time! This is
the basis of ADRC.

2.3 LADRC tuning method

Han’s ADRC method (Han 1998, Su et al. 2002) shows
a huge success in dealing with some of the most
challenging industrial control problems but it has
many parameters to be tuned. So, one remaining task
to field engineer is how to simplify the tuning process.
Gao (Gao 2003, Gao et al. 2001a) proposed a tuning
method using linear gains in ADRC which reduces
tuning parameters to only two, namely, the closed-loop
bandwidth !c and the observer bandwidth !o.

Gao’s tuning method can be described as follows for
a 3-dimensional problem.

Write (4) as

_xðtÞ ¼ AxðtÞ þ BuðtÞ þ EhðtÞ,

yðtÞ ¼ CxðtÞ,

)
ð5Þ

where

A ¼

0 1 0
0 0 1
0 0 0

2
4

3
5, B ¼

0
1
0

2
4

3
5, C ¼ 1 0 0

� �

and E¼ ½ 0 0 1 �T. Note that [ ]T denotes transpose.
The state space observer, denoted as the linear extended
state observer (LESO), of (5) is constructed as

_zðtÞ ¼ AzðtÞ þ BuðtÞ þ LðyðtÞ � ŷðtÞÞ,

ŷ ¼ CzðtÞ,

)
ð6Þ

and L is the observer gain vector, which can be obtained
by using any known method such as the pole placement
technique,

L ¼ ½�1 �2 �3 �
T: ð7Þ

Optimal fast tracking observer bandwidth 103



With the state observer properly designed and the
controller is given by

uðtÞ ¼ �z3ðtÞ þ u0ðtÞ

u0ðtÞ ¼ kpðvðtÞ � z1ðtÞÞ � kdz2ðtÞ,

)
ð8Þ

where kd is the gain of the derivative controller, kp is the
gain of the proportional controller, and v(t) is the
desired trajectory of the position. With the PD gains
chosen as

kd ¼ 2�!c and kp ¼ !2
c , ð9Þ

where !c and � are the desired closed-loop bandwidth
and damping ratio. The closed-loop transfer function
GclðsÞ in Laplace transform is approximately a standard
second order transfer function

GclðsÞ ¼
kp

s2 þ kdsþ kp
¼

!2
c

s2 þ 2�!csþ !2
c

: ð10Þ

The ratio � can be conveniently set to unity to avoid any
overshoot in the response and to allow the closed loop
bandwidth, !c, the only tuning parameter to be adjusted
in implementation. Furthermore, the observer gains can
be obtained using any known method such as the pole
placement technique. If the observer gains are chosen as

L ¼ ½ 3!o 3!2
o !3

o �
T, ð11Þ

the characteristic polynomial of the observer is

loðsÞ ¼ s3 þ �1s
2 þ �2sþ �3 ¼ ðsþ !oÞ

3
ð12Þ

which means that the observer bandwidth, !o, is the
only tuning parameter in the observer. Therefore, the
number of tuning parameters in ADRC reduces to two.

3. Formulation of fast tracking problem

3.1 Formulation of minimization problem

As shown in x 2.3, LADRC has the simple structure with
only two tuning parameters. However it showed
excellent performances and it was proved through the
experiments (Gao 2003). Uncertainties of the function
f(�) are eliminated in real time, and are compensated by
the control signal if LESO is properly designed.
However, LESO in LADRC requires that the estimate
signal z(t) quickly traces the actual signal x(t). For this
reason, it is of interest to know under what conditions
z(t) tracks the actual signal x(t) and, if the conditions
exist, which condition attains the best solution making
a faster tracking basis. Thus the principle aim of this
paper can be represented in a minimization problem,
namely, fast tracking problem as follows.

Problem 1: Given any positive number ", minimize
t0 such that kxðtÞ � zðtÞk2 < ", for all t>t0 subject

to: state-space representation (5) and (6), two tuning
parameters !c and !o, controller (8) and known desired
trajectory of the position v(t), unknown function
fðt, x1ðtÞ,x2ðtÞ, uðtÞ,wðtÞÞ:

The challenging task is, if there exists a feasible solution
for the fast tracking problem, how to express it in terms
of !c and !o. In x 4, a finite difference method is used to
analyse the feasible solution of this fast tracking
problem.

3.2 Assumptions of uncertain function

The precise mathematical model of the function fð�Þ is
usually unavailable in practice. The performance of
plant is subject to the characteristics of control system.
However, in most motion control applications, we may
assume that the function fð�Þ has the following
properties:

Assumption 1: j fðt, yðtÞ, _yðtÞ, uðtÞ, wðtÞÞj � k1 for a
known constant k1 and all t � 0.

Assumption 2: fð�Þ is piecewise continuous on an interval
0 � t � T for any T>0 where the interval is partitioned
by a finite number of points 0 ¼ t0 < t1 < � � � < tn ¼ T.

Assumption 3: fð�Þ is continuous and differentiable
on each subinterval ti�1 < t < ti such that jðd=dtÞ
fðt, yðtÞ, _yðtÞ, wðtÞÞj � k2 for a known constant k2.

Practically speaking, the ranges of fðt, yðtÞ, _yðtÞ,
uðtÞ, wðtÞÞ and bðtÞ are usually known but their analytical
expressions are hard to come by.

4. Numerical approach to the estimation error

4.1 Discretization of estimation error

To approximate the error between state estimation (z)
and the actual state (x), let the estimation error
e(t)¼ x(t)� z(t) where e(t), x(t) and z(t) are 3� 1
column vectors. Then, from (5) and (6), the tracking
error dynamics becomes

_eðtÞ ¼ ðA� LCÞeðtÞ þ EhðtÞ: ð13Þ

The closed-loop bandwidth will not be used to find
tracking conditions for observer because the closed-loop
bandwidth is used only in the control term u(t), which
does not appear on the tracking error dynamics. Thus
we need only the observer bandwidth to approximate
the tracking error. Therefore, Problem 1 becomes
Problem 2.

Problem 2: Given any positive number ", minimize t0
such that keðtÞk2 < ", for all t>t0 subject to: system
representation (13), one tuning parameter !o, known
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desired trajectory of the position v(t), and unknown
function f(�) satisfying Assumptions 1–3.

Since we consider a digital implementation on the
motion control with LESO, the system (13) can be
discretized to find feasible solutions satisfying the fast
tracking problem. Assume the time step size for z is
equal to the one for x so that we can define �t>0 as the
time step size for e. By the numerical approach using
Euler’s forward method, the discretized form of (13) is

e½k� ¼ ðIþ�tðA� LCÞÞe½k� 1� þ Eða½k� � a½k� 1�Þ

¼ ðIþ�tðA� LCÞÞke½0� þ
Xk
i¼1

ðIþ�tðA� LCÞÞk�i

� Eða½i� � a½i� 1�Þ, ð14Þ

where

ðIþ�tðA� LCÞÞ ¼

1� 3�t!o �t 0

�3�t!
2
o 1 �t

��t!
3
o 0 1

2
64

3
75,

E ¼

0

0

1

2
64

3
75, h½k� 1� ¼

a½k� � a½k� 1�

�t

and k ¼ t=�t

� �
>0. As long as the right hand side in (14)

approaches to zero, it is clear that e[k] converges to limit
zero. Thus, to have feasible solutions to the fast tracking
problem, we need the following assumption:

Assumption 4: The initial tracking error e[0] is bounded.

In particular, the spectral radius of ðIþ�tðA� LCÞÞ,
defined as �ðIþ�tðA� LCÞÞ ¼ maxl 2 � ðIþ�tðA�LCÞÞjlj,
plays a central role of fast tracking estimation, where
�ðIþ�tðA� LCÞÞ is the set of distinct eigenvalues.

Theorem 1 (convergence to zero): For matrix
M2Cn�n, limk!1 Mk ¼ 0 if and only if �ðMÞ < 1.

Thus, the spectral radius of ðIþ�tðA� LCÞÞ must be
less than 1 such that ðIþ�tðA� LCÞÞke½0� exponentially
decays independent of e[0] as k ! 1. The spectral
radius of ðIþ�tðA� LCÞÞ is

�ðIþ�tðA� LCÞÞ ¼ j1��t!oj: ð15Þ

It should satisfy j1��t!oj < 1. Therefore, the first
constraint for the convergent condition requires

0 < !o < ð2=�tÞ: ð16Þ

Assumption 5: If observer bandwidth !o is selected
within the constraint (16), there exists k>n0 where n0 is a
sufficiently large natural number such that
kðIþ�tðA� LCÞÞkCk2 < ð"=3Þ for any positive number
" and a fixed constant C.

Using Assumptions 4 and 5 with the constraint (16), the
first term of (14) can be upper bounded as

ðIþ�tðA� LCÞÞke½0�
��� ���

2
< ð"=3Þ: ð17Þ

It shows that the effect of initial tracking error e[0]
decays as k>n0. For the sake of simplicity, introduce
3� 1 vector Gi with its row components, Gi

1,G
i
2, and Gi

3

such that

ðIþ�tðA� LCÞÞiE ¼ Gi
¼ Gi

1 Gi
2 Gi

3

� �T
: ð18Þ

From the upper bound (17), we can induce that the
behaviour of the tracking error e[k] is dominated by
the second term in (14) as k>n0.

e½k�
�� ��

2
<

Xk
i¼1

Gk�i
ða½i� � a½i� 1�Þ

�����
�����
2

þð"=3Þ: ð19Þ

Applying (18) to Assumption 5, we can get

GkC
�� ��

2
< ð"=3Þ, ð20Þ

for a fixed constant C. When k>n0, applying
Assumption 5 into the first term in (19) yields

X
i¼1

GkLk�iða½i� � a½i� 1�Þ

�����
�����
2

�
Xk

i¼k�n0

Gk�i
ða½i� � a½i� 1�Þ

�����
�����
2

þ
Xk�n0�1

i¼1

Gk�i
ða½i� � a½i� 1�Þ

�����
�����
2

<
Xk

i¼k�n0

Gk�i
ða½i� � a½i� 1�Þ

�����
�����
2

þ ð"=3Þ: ð21Þ

The boundedness of k
Pk�n0�1

i¼1 Gk�i
ða½i� � a½i� 1�Þk2 is

easily proved by the component-wise triangle inequality
(refer to Lemma 1). Define the notation sk as

sk ¼ maxfja½i� � a½i� 1�j jk� n0 � i � kg, ð22Þ

where k and n0 satisfy Assumption 5. Let !o ¼ ðm=�tÞ

where 0<m<2 from the constraint (16). Then the
vector term Gi can be generalized as

Gi
¼

iði� 1Þ

2
ð1�mÞ

i�2�2
t

iðði� 2Þmþ 1Þð1�mÞ
i�2�t

ði� 1Þði� 2Þ

2
m2 þ ði� 2Þmþ 1

� �
ð1�mÞ

i�2

2
66664

3
77775:

ð23Þ

Since the choice of m in 0<m<2 may change the sign of
(1�m), we will consider two cases which depend on the
sign of (1�m). The upper bound of sum in (21) will be
approximated respectively for two cases, and it will be
compared each other.
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Case 1 (0<m� 1): The radius of convergence is non-
negative. Therefore, the row components Gi

1,G
i
2, and

Gi
3 � 0 for all i� 0. By applying the component-wise

triangle inequality to the matrix power series term
of (21), we have

Xk
i¼k�n0

Gk�i
ða½i� � a½i� 1�Þ

�����
�����
2

� sk
Xn0
i¼0

Gi

�����
�����
2

� sk
Xk�1

i¼0

Gi

�����
�����
2

:

ð24Þ

By calculating the power series of (24), we can get

Xk�1

i¼0

Gi

�����
�����
2

¼
Xk�1

i¼0

iði� 1Þ

2
ð1�mÞ

i�2�2
t

iðði� 2Þmþ 1Þð1�mÞ
i�2�t

ði� 1Þði� 2Þ

2
m2 þ ði� 2Þmþ 1

� �
ð1�mÞ

i�2

2
666664

3
777775

�����������

�����������
2

¼

�2
t

1

m3
�
ð1�mÞ

k

2

kðk� 1Þ

mð1�mÞ
2
þ

2k

m2ð1�mÞ
þ

2

m3

� � !

�t
3

m2
� ð1�mÞ

k kðk� 1Þ

ð1�mÞ
2
þ

k

mð1�mÞ
þ

1

m2

� �� �
3

m
� ð1�mÞ

k kðk� 1Þm

2ð1�mÞ
2
þ
2k� 1

1�m
þ

1

mð1�mÞ

� �

2
666666664

3
777777775

���������������

���������������
2

�
�2

t

m3

3�t

m2

3

m

� 	T�����
�����
2

: ð25Þ

Case 2 (1<m<2): The radius (1�m) of convergence is
negative, and so raising the power of (1�m) alters
its sign. Therefore, applying the component-wise
triangle inequality derives the upper bound of the sum
in (21) as

Xk
i¼k�n0

Gk�i
ða½i��a½i�1�Þ

�����
�����
2

.
sk

�
Xk�1

i¼0

iði�1Þ

2
ð1�mÞ

i�2�2
t

����
����

jiðði�2Þmþ1Þð1�mÞ
i�2�tj

j
ði�1Þði�2Þ

2
m2þði�2Þmþ1

� �
ð1�mÞ

i�2
j

2
666664

3
777775

�����������

�����������
2

�
Xk�1

i¼0

iði�1Þ

2
ðm�1Þi�2�2

t

iðði�2Þmþ1Þðm�1Þi�2�t

ði�1Þði�2Þ

2
m2þði�2Þmþ1

� �
ðm�1Þi�2

2
666664

3
777775

�����������
þ

0

2�t

2

2
64

3
75
�������
2

�
�2

t

ð2�mÞ
3
�t 2þ

3m�2

ð2�mÞ
3

� �
2þ

3m2�6mþ4

ð2�mÞ
3

� 	T�����
�����
2

:ð26Þ

4.2 Boundedness of estimation error

The value of the upper bound on (25) is smaller than
the one on (26), which means that the case for 1<m<2
has larger error in a worst case. By this reason, we
consider the case only for 0<m� 1. From the upper
bound (25), k

Pk�1
i¼0 Gik2 has the upper bound as:

Xk�1

i¼0

Gi

�����
�����
2

�

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
�4

t

m6
þ
9�2

t

m4
þ

9

m2

r
: ð27Þ

Lemma 1 (general property of LESO’s estimation
error): Define 0<m� 1. 2-norm sequence ke[k]k2 of
LESO’s estimation error is bounded over all time
t 2 ½0,T� if the Assumption 4 holds.

Proof: From the Assumption 3, we know that
ja½i�j � k2 for all i and a known constant k2. The
tracking estimation error e[k] is obtained from (14).
Thus, applying Cauchy’s inequality and the triangle
inequality to 2-norm sequence ke[k]k2 yields

e½k�
�� ��

2

¼ ðIþ�tðA� LCÞÞke½0� þ
Xk
i¼1

Gk�i
ða½i� � a½i� 1�Þ

�����
�����
2

� e½0�
�� ��

2
þ�t A� LCk k2

Xk�1

i¼0

ðIþ�tðA� LCÞÞi

�����
�����
2

e½0�
�� ��

2

þ 2k2
Xk�1

i¼0

Gi

�����
�����
2

:

From (27), k
Pk�1

i¼0 Gkk2 is shown as bounded.
e[0] is bounded from Assumption 4. The
2-norm of ðA� LCÞÞ is upper-bounded byffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
2þ ð�6

t =m
6Þ þ ð9�4

t =m
4Þ þ ð9�2

t =m
2Þ

p
. The 2-norm of

the sum of ðIþ�tðA� LCÞÞi is bounded and it
converges to the 2-norm of ðA� LCÞÞ�1 as k ! 1

since the spectral radius of ðIþ�tðA� LCÞÞ is less
than 1. Thus e½k�

�� ��
2

is bounded over all time
t 2 ½0,T�. œ

Lemma 2 (boundedness of LESO’s estimation
error): Define 0<m� 1. As k>n0 under Assumptions
4 and 5, 2-norm sequence ke[k]k2 of LESO’s estimation
error is upper bounded by

sk

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
ð�4

t =m
6Þ þ ð9�2

t =m
4Þ þ ð9=m2Þ

q
þ ð2"=3Þ

for any positive number ".
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Proof: The bound of ke[k]k2 can be found as

e½k�
�� ��

2

<
Xk
i¼1

Gk�i
ða½i� � a½i� 1�Þ

�����
�����
2

þð"=3Þ ðfrom ð19ÞÞ

<
Xk

i¼k�n0

Gk�i
ða½i� � a½i� 1�Þ

�����
�����
2

þ ð2"=3Þ ðfrom ð21ÞÞ

< sk
Xk�1

i¼0

Gi

�����
�����
2

þð2"=3Þ ðfrom ð24ÞÞ

< sk

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
�4

t

m6
þ
9�2

t

m4
þ

9

m2

r
þ ð2"=3Þ, ðfrom ð27ÞÞ

where k>n0 and 0<m� 1. œ

Theorem 2 (convergence condition of LESO’s estimation
error): Let 0<m� 1. 2-norm sequence ke½k�k2
of LESO’s estimation error converges to limit zero
if, for any positive number ",
sk

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
ð�4

t =m
6Þ þ ð9�2

t =m
4Þ þ ð9=m2Þ

p
� ð"=3Þ under

Assumptions 4 and 5 as k>n0.

Proof: If sk
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
ð�4

t =m
6Þ þ ð9�2

t =m
4Þ þ ð9=m2Þ

p
� ð"=3Þ

under Assumptions 4 and 5, then it can be easily
induced from Lemma 2 that ke½k�k2 < " for any positive
number " as k>n0. Thus, by the theorem of convergent
sequence, it is proved. œ

4.3 Numerical solutions of tracking
convergence condition

Theorem 2 entails the induced result that LESO is
globally asymptotically stable at an equilibrium point.
To get more specific tracking convergence condition of
observer bandwidth !o from Theorem 2, we need to
solve the inequality problem as

sk

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
ð�4

t =m
6Þ þ ð9�2

t =m
4Þ þ ð9=m2Þ

q
� ð"=3Þ: ð28Þ

Since both sides in (28) are non-negative, the problem
finding the tracking convergent condition is reduced to
solving the inequality problem as

�t=mð Þ
6
þ9 �t=mð Þ

4
þ9 �t=mð Þ

2
� �t"=3skð Þ

2: ð29Þ

Let x ¼ ð�t=mÞ
2. Then the equality part in (29) becomes

the cubic equality problem as

x3 þ 9x2 þ 9x ¼ �t"=3skð Þ
2, ð30Þ

where x>0. By letting x ¼ pþ ð6=pÞ � 3, (30) can be
rewritten as

ðp3Þ2 þ 27� ð�t"=3skÞ
2

� �
p3 þ 216 ¼ 0: ð31Þ

Equation (31) is in the form of a quadratic equation
of p3. Using the quadratic formula, the roots of p3 are

� 27�
�t"

3sk

� �2
 !

�

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
27�

�t"

3sk

� �2
 !2

�864

vuut
0
B@

1
CA
2:

ð32Þ

Since x>0 and (30) has one real root and one complex
conjugate pair, the discriminant of (31) must be negative
by choosing " as

0 < " < 3

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
27þ 12

ffiffiffi
6

p
q� �

ðsk
�
�tÞ, ð33Þ

where sk>0. By calculating the roots for !o ¼ ðm=�tÞ

from the roots of p by the backward calculation, the
solution sets of (28) can be written as follows.

Let

� ¼
1

3
arc tan

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
� 27�

t"

3sk

 !2
0
@

1
A

2

þ864

vuuut
0
B@

1
CA

t"

3sk

 !2

�27

0
@

1
A

0
BBBBBBBBB@

1
CCCCCCCCCA
: ð34Þ

Figure 1 shows graphically the places of the possible
root ð�t=mÞ ¼ ð1=!oÞ in (28). The roots exist if the curve
passes through the quadrant where ð�t=mÞ > �t and
ð�t"=3skÞ > 0.

Solution 1: As 0 < " < ð9
ffiffiffi
3

p
Þðsk=�tÞ, the inequality

of (28) holds if

1=

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
2
ffiffiffi
6

p
cos � � 3

q� �
� !o � ð1=�tÞ ð35Þ

Figure 1. Graphical solutions in ð�t=mÞ � plane:
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where ð�=6Þ � � � arc cosð
ffiffiffi
6

p
=4Þ. As the inequality

holds, the curve line for equality part of (28) lies
between ðaÞ�ðbÞ region in figure 1.

Solution 2: As ð9
ffiffiffi
3

p
Þðsk=�tÞ � " < ð3

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
27þ 12

ffiffiffi
6

pp
Þ

ðsk=�tÞ, the inequality of (28) holds if

1=

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
2
ffiffiffi
6

p
cos � � 3

q� �
� !o � ð1=�tÞ ð36Þ

where 0� �� (�/6). As the inequality holds, the curve
line for equality part of (28) lies between (b)–(c) region in
figure 1.

Corollary 1: Let 0<m� 1. As k>n0 under the
Assumptions 4 and 5, if there exists observer bandwidth
!o satisfying one of solutions (35) and (36) for any positive
number ", then 2-norm sequence ke[k]k2 of LESO’s
estimate error converges to limit zero.

5. Optimal solution of fast tracking problem in

discrete time

The description for the fast tracking problem
(Problem 2) is modified in discrete time domain as in
Problem 3.

Problem 3: Given any positive number ", minimize t0
such that keðtÞk2 < ", for all k(¼ t=�t

� �
Þ >

ð t0=�t

� �
Þ and �t > 0 subject to: discrete time system

representation (14), one tuning parameter
0 < !o � ð1=�tÞ known desired trajectory of the posi-
tion v(t) unknown function fð�Þ with Assumptions 1–5.

The feasible solutions of !o are specified in solutions
(35) and (36). The angle � has three factors, �t, " and sk.
The sampling time �t is delimited by the characteristics
of the hardware in use. The absolute error tolerance "
can be determined by a practical control engineer. Thus
we assume both the sampling time �t and the absolute
error tolerance " are fixed so that the only factor for the
feasible solutions is sk. If sk � 0, then the fast tracking
problem entirely lies above the curve figure 1, which
means that no feasible solution exists. Note that we
require 0 < !o � ðm=�tÞ and 0 < m � 1 for feasibility.
Thus feasible solutions lie on the portion of the
quadrant where ð�t=mÞ � �t and ð�t"=3skÞ > 0: If
sk ! 0, then the curve on figure 1 moves as
ðaÞ ! ðbÞ ! ðcÞ. Therefore, the sampling time �t

touches the curve at first then the other values on
ð�t=mÞ axis.

Theorem 3: The numerical solutions (35) and (36) are
the feasible solutions of the fast tracking problem in
discrete time domain. Then the choice of !o ¼ ð1=�tÞ is
the optimal fast tracking observer bandwidth.

6. Simulation

The practical model of the simulation in this section is
used in Gao et al. (2001b, 2003) and Yoo (2005).
The estimated mathematical model of motion control
system is

€y ¼ ð�1:41 _yþ 23:2TdÞ þ ð23:2� 40Þuþ 40u ¼ fþ 40u,

where y is the output position, u is the control voltage,
and Td is the torque disturbance. The corresponding
linear extended state observer is

_zðtÞ ¼
�3!o 1 0
�3!2

o 0 1
�!3

o 0 0

2
4

3
5zðtÞ þ 0

40
0

2
4

3
5uðtÞ þ 3!o

3!2
o

!3
o

2
4

3
5yðtÞ

where the controller is defined as u ¼ ðu0 � z3Þ=40,
u0 ¼ kpðr� z1Þ � kdz2, and r is reference input,
kd ¼ 2�!c, � ¼ 1, and kp ¼ !2

c , and the estimates
should satisfy the conditions as

z1 ! y, z2 ! _y, and z3 ! f as t ! 1:

The design objective is to rotate the load one revolution
in one second with no overshoot and the control signal u
has the physical constraint juj<3.5 volt.

The simulation is performed by Simulink using ode1
(Euler) with a fixed step of 1ms sampling time. A step
torque disturbance of 10% of the maximum torque is
added at t¼ 2 second. Two different velocity profiles
shown in figure 2 are used to generate the reference
input for the simulation. In all our simulations, we used
the fixed closed-loop bandwidth, !c ¼ 100(rad/s).
Because !c was not considered on the analysis of
estimation error, and also !c does not affect significantly
the speed of the tracking estimation error (Yoo 2005).
In the first simulation shown at figure 3, two different
values of the observer bandwidth are used with the
trapezoidal profile. They are !o¼ 100 (rad/s) and
!o¼ 1000 (rad/s). As we expected, the simulations with
!o¼ 1000 (rad/s) shows more faster tracking tendency
than the one with !o¼ 100 (rad/s). The apparent
difference can be seen on the tracking results about
uncertain dynamics. From now on, we call 2-norm of
estimate error an absolute error. The next simulation is
performed with the two profiles where the value of the
observer bandwidth, !o, is changed from 20 (rad/s) to
1000 (rad/s) and the results of the computed absolute
error over those observer bandwidths are shown in
figure 4.

The trapezoidal profile is used in figure 4(a), and the
smooth S-curve profile in figure 4(b). As the value of
observer bandwidth is getting smaller close to 20 (rad/s),
the radius of convergence in (15) goes close to 1.
Consequently it requires a long time to reduce the effect
of estimate error. Since the effect of estimate error is
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Figure 3. Tracking behaviours with trapezoidal profiles: (a) !c ¼ 100 ðrad=sÞ and !o ¼ 100 ðrad=sÞ; (b) !c ¼ 100 ðrad=sÞ and
!o ¼ 1000 ðrad=sÞ:

Figure 2. Velocity profiles: (a) trapezoidal profile; (b) smooth S-curve profile.

Figure 4. Absolute errors on the fixed !c ¼ 100 ðrad=sÞ: (a) absolute error with the trapezoidal profile; (b) absolute errors with
smooth the S-curve profile.
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accumulated as seen in (14), it incurs the large value of
absolute error near the observer bandwidth 20 (rad/s).
Conversely, as the value of the observer bandwidth is
getting close to 1000 (rad/s), the radius of convergence
goes close to zero. That means that it can reduce the
effect of estimate error faster. So, the value of
absolute error is getting smaller as shown in figure 4.
For a better view of the comparison among the different
values of observer bandwidth, three values,
!o¼ 50, 500, 1000 (rad/s), are selected. The results are
shown in figure 5. As the observer bandwidth is
1000 (rad/s), its absolute error is smaller than the
others, and the absolute error is decayed faster. For a
comparison between two profiles, the observer band-
width is fixed at 500 (rad/s) as shown in figure 6. When
the trapezoidal profile is used, it has relatively higher
absolute errors. Because the trapezoidal profile has
larger jerk than one for the smooth S-curve profile, and
one of the factors affecting sk in (22) is the jerk of the
trajectory function. This can easily be deduced from (1).
Thus, the case with the smooth S-curve profile can
reduce the effect of estimate error faster than the one
with the trapezoidal profile.

7. Conclusion

The fast tracking problem in discrete time domain has
been constructed for the tracking error dynamics of
LESO. The existence of the feasible solution of the fast
tracking problem is strongly concerned with the
uncertainty of motion control applications. To reduce
the effects of the uncertainty, the selection of
observer bandwidth and the design of motion profile
must be taken into consideration. As shown in

simulation results, the motion profile with smaller jerk

is desirable to the fast tracking estimation of observer.

We have also shown that the observer bandwidth takes

the central role of tracking estimation of LESO. With

digital implementation in LESO, the observer band-

width in the feasible solution of the fast tracking

problem takes values less than the inverse of sampling

time. The optimal fast tracking observer bandwidth is

the inverse of sampling time. These results provide a

design guideline for the LESO design in motion control

applications.

Figure 5. Comparison of absolute errors on the selected observer bandwidth ð!o ¼ 100, 500, 1000 ðrad=sÞ and !c ¼ 100 ðrad=sÞÞ:
(a) Comparison of absolute errors in the trapezoidal profile; (b) Comparison of absolute errors in the smooth S-curve profile.

Figure 6. Comparison of absolute errors between trapezoidal
profile and smooth S-curve profile in the fixed observer
bandwidth !o ¼ 500 ðrad=sÞ ð!c ¼ 100 ðrad=sÞÞ:
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