
Application of Classical Controller Design 
Techniques to an Industrial Positioning System 

 
Abstract—A positioning control system for an industrial 
application is designed and simulated for the use with a PID and 
loop-shaping controller. Classical design techniques are applied 
and their control performance under various conditions is 
assessed. The simulation is carried out under different input and 
disturbance conditions, as well as resonance mode additions.  
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I.  INTRODUCTION 
      The methods of classical controller design, such as the 
celebrated frequency response method, have a well-established 
theoretical background. But their application in industry has 
been very sparse, save for the Proportional-Integral-Derivative 
(PID) controller which accounts for over 90% of all industrial 
controller applications. Here we use a real-world industrial 
positioning system to make a comparison between PID and 
loop-shaping controller design. Our approach is problem-
oriented, with the main focus on system performance, not the 
demonstration of what a particular control design is capable 
of. We want to compare controller performance under various 
inputs and disturbances, as well as the amount of tuning effort 
spent in obtaining the desired performance under the different 
conditions.  This will give us a good idea of why the PID 
controller is so widely used in industry and a glimpse of how 
to excel it.          
 

II. PLANT  MODELING 
      The plant (figure 1) is based on a belt-and-pulley 
mechanism, driven by a DC motor. It is to move a load of 
235lbs by 12 inches in 0.3 seconds with no overshoot. Plant 
and control saturations have been included in the model. 

 

 
 

Figure 1.  SIMULINK Model of Plant 

From the plant model, a closed-loop PID control is constructed 
(figure 2). All the components in the plant simulation, 
including the parameters and saturations have been provided by 
Gao [1]. The closed-loop system design has been modified 
after Gao’s design. The modifications allow for different inputs 
and disturbances through simple manual switches. 

 

 
 

Figure 2.  SIMULINK Model of Closed-loop Control 

 

III. PID TUNING 
     The PID controller was proposed in 1922 by N. Minorsky 
[2] based on intuitive arguments of error feedback. Its control 
law is given by (1). 

eKeKeKu dip &++= ∫                       (1)                          

 
The tuning of PID is generally based on a set of empirical 
rules of thumb. Generally speaking the proportional gain pK  
is first tuned to give an adequate response speed, while the 
differential gain dK  is then used to decrease the overshoot. 

Tuning the integral gain iK  may remove steady state error. 
The PID is retuned depending on the input profiles used. 
 

A. Step input 
      For the initial simulation with a step input of 12V (at t=0) 
and no external disturbance and noise, different PID parameter 
sets with similar performance results were compared. Several 
of them do not require the integral part, which hints at the fact 
that the plant already contains one integrator for position. It is 
decided that the set with 2.2=pK , 0=iK , 168.0=dK  
be adopted, for the benefit of small gain values. The voltage 
and current response are comparatively smoother than other 
parameter sets. The position response clearly satisfies the 
settling time of 0.3s (figure 3).   
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Figure 3. Position Response under Step Input  

In order to achieve settling times less than 0.3s, the 
proportional and differential gains were tuned up. For instance 
the parameter set 6.2=pK , 0=iK , 2.0=dK  gives a 
better settling time. The attempt to lower it below 
approximately 0.2s was however unsuccessful.  The observed 
control voltage has an initial spike reaching more than 5000V, 
which increases with increasing controller gains. 

There is always a trade-off between settling time performance 
and the armature voltage and current. The position response 
can be improved at a cost of large unsteadiness in current and 
voltage.   

 

B. Addition of a low pass prefilter. 
      In order to decrease control and armature voltages, a low 
pass prefilter with unity gain is inserted directly after the step 
input. It is chosen to be a second order filter, such that the 
damping factor is unity (to achieve critical damping). The 
natural frequency which gives rise to a settling time of approx. 
0.3 seconds is empirically determined to be 26=ω rad/s, in 
discordance with the theoretical value of 13.33 rad/s. This is 
presumably due to the fact that the second order filter has a 
dominant pole which renders the settling time formula 
inaccurate.  In order to track the prefilter’s motion profile, the 
PID has to be retuned to 8.0=pK , 0=iK , 16.0=dK    
(for results see figure 4).  There is significant change in the 
motor voltage and current amplitude, the initial spikes become 
smaller. The control voltage decreased by an entire magnitude.   
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Figure 4.  Prefiltered motion profile and position tracking 

 

C. Trapezoidal velocity profile. 
      When the low-pass filter is replaced by a standard 
trapezoidal velocity profile, the armature voltage and current 
are much smoother and smaller than either of the previously 
used profiles (figure 5). The resulting control voltage stays  
within +5V and –5V. The same smoothness is evident in the 
velocity output. This fact makes this profile widely used in the 
industry, since it minimizes deleterious abrupt changes in  
system dynamics. The trapezoidal profile is defined in 
Simulink by the 1-D look-up table with the input vector [0 0.1 
0.2 0.3 0.4] and the output vector [0 1.5 1.5 0 0]. The PID has 
to be slightly retuned for the position output to follow this 
profile without overshoot. 

 

 

Figure 5.  Effect of Motion profiles on Armature Current 

 

The comparison of various motion profiles illustrates the strong 
effect they may have on the dynamics of the system. The 
choice of motion profile will thus affect the controller 
performance. This results in the need to retune the PID gains 
for each of the three motion profiles above to achieve optimal 
performance. A fair comparison of different controllers must 
therefore be based on the same motion profiles. 

 

IV. CONTROLLER PERFORMANCE UNDER DISTURBANCE 
      Control systems are always subject to external disturbance 
and internal noise which affects the dynamics. If the nature of 
the disturbance is known, they can be modeled 
mathematically. In the positioning system, this is done by 
adding torque disturbance to the motor and sensor noise to the 
position sensor. In practice however, the nature of most 
disturbances is not known and may not be easily modeled in 
simulation. The performance of the PID controller is assessed 
through simulation under various known forms of disturbance 
and noise. To have a consistent ground for comparison, the 
prefiltered step motion profile from Section III.B is used. 
 



A. Sensor noise. 
       A small, random noise is introduced in the simulation, 
whose purpose is to mimic sensor noise. In Simulink, this is 
achieved through adding a “Band-limited White Noise” block 
into the feedback branch from the position to the controller, 
i.e., where the position sensor is normally located. The prefilter 
and the corresponding PID tuning is used. When a noise of 
0.1% of the final position values is added (i.e. a value of 0.012 
inch is set in the Simulink noise box), the response still 
maintained its stability, while deviating within 2% from its 
steady state value of 12 inches. However when the sensor noise 
is gradually increased to 10%, the response looses integrity, 
and deviations to almost 16 inches are seen (figure 6). The 
current and voltage response become unsteady even under 
0.1% noise, exhibiting sharp peaks.  
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Figure 6.  Effects of various degrees of sensor noise 

 

B. Constant and Sinusoidal Torque Disturbances. 
      A constant torque disturbance is added into the plant at 
the total torque summing junction (see figure 1). Its onset is 
at time t = 0. The value of the torque disturbance, given in 
English units, is sec/* inchlb .  The steady state error 
grows with the disturbance. Above a value of 1000, the 
position response grows out of bound (figure 6). This is 
especially striking at a value greater than 1500. The current 
and voltage response are manifested through a hefty initial 
rise.      
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Figure 7.  Effects of various degrees of constant disturbance 

 

       The constant torque is replaced by a sinusoidal torque with 
an amplitude of 10% of the maximum motor torque. The motor 
torque is related to the maximum current via the relation  

at IK=τ . The value of the torque constant tK  is 13.2 

Ainchlb /* . The maximum measured current of nearly 
100A indicates a maximum torque disturbance of 1320 

sec/* inchlb .  The lower the disturbance frequency, the 
more drastic is the effect on the position response. While any 
disturbance above 10Hz becomes insignificant, resulting in 
only < 2% steady state variation, frequencies below 5Hz make 
the response increasingly unstable, with 1Hz being the lower 
limit (figure 8). An interesting synopsis is obtained by 
comparing the frequency variation at the amplitude of 1320 to 
constant torque disturbance of the same amplitude: the constant 
disturbance reaches a maximal initial position deviation up to 
25 inches, whereas the sinusoidal disturbance achieves the 
same deviation only at a frequency of 1Hz or lower.   
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Figure 8.  Effects of  various degrees of sinusoidal disturbance  



V. LOOP-SHAPING CONTROLLER DESIGN 
Among the classical controller design methods, Loop-Shaping 
is the only existing analytical technique that can address most 
of design specifications and constraints at once. The term loop-
shaping [4], [5] refers to the manipulation of the open-loop 
gain frequency response (2), as a design tool.     

                          )()()( sGsCsL =                                       (2)                                              

Given the transfer function of the plant G(s), the goal is to 
design a controller C(s), such that the open-loop gain L(s) 
attains the ideal Bode Gain Plot given in Figure 9. Such a 
controller is also termed a compensator. The design 
specifications and constraints are addressed as follows. At low 
frequency, the loop gain should be big, to achieve low steady 
state error; whereas in the high frequency domain, a low gain is 
required to attenuate noise. In the middle section where the 
bandwidth of the system lies, the slope of the Bode Gain Plot 
should be -20dB/dec, to mimic the effect of an integrator. The 
speed of the plant response is reflected in the choice of an 
appropriate bandwidth.  The stability margins of the open-loop 
are to be kept above a reasonable range.  

 

Figure 9.  Ideal Bode Plot Shape  

 

A. Characterization  of PID Loop 
      The PID controller may be characterized through a 
frequency response analysis of the PID-loop gain, L(s). Based 
on equation 2, Bode plots are graphed for L=CG, where C is 
the PID controller, and G the positioning plant transfer 
function.  Through simple block diagram reduction of figure 1, 
the transfer function for position is obtained as:  
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Equation 3 shows that the plant is third order, with second 
order dominant poles at the origin and 3.1.  The PID transfer 
function can be obtained from (1) 

sKsKKsC dipPID ++= /)(                                 (4) 

whereby the PID gains are {0.8, 0, 0.16}. Multiplying (3) and 
(4) gives the PID-loop gain. 
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From equation (5), the bode plot, and hence the gain and phase 
margins can be determined (figure 10). The infinite gain 
margin and a phase margin of 87.6 degrees bespeak of the 
robust stability of this PID loop. 
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Figure 10. Bode Plots of PID -Loop 

The loop bandwidth of approximately 33.1 rad/s points toward 
a settling time of .sec12.0/4 =≈ nst ω  The fact that the 
actual position response simulated in Part I was close to 0.3sec 
may be due to the existing saturations in the plant.  It should be 
reminded that the frequency response only applies to linear 
systems.  Thus the loop-shaping method cannot adequately 
address non-linearities in plant dynamics such saturation. 

The bandwidth of the PID loop gives us an idea of how to 
improve the controller using loop shaping design: The new 
open-loop transfer function should have a bandwidth 
significantly greater than 33.1 rad/s, while still maintaining 
proper stability margins. In particular, a minimum phase 
margin of 60 deg is recommended.    

 

B. Compensator Design 
The design of the compensator requires extensive manipulation 
of Bode plots. An advanced graphical user interface tool, 
Matlab SISOTool, has been employed. The resulting 
compensator (6) and Bode plots (figure 11) show very stable 
gain margin of 28dB and phase margin of 73 degrees.  
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The approximate bandwidth is 39.4 rad/sec, which corresponds 
theoretically to a settling time of 0.1s. However, simulations 
employing the three motion profiles from Part I all resulted in a 
settling time equal or greater than 0.3s. 
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Figure 11.  Bode Plots of Compensator-Loop 

 

As in the case with the PID, the discrepancy between 
theoretical and actual performance can be traced back to plant 
saturations. The range of control voltage saturation is +-8V, 
beyond which the plant becomes highly non-linear. The initial 
control signal following step input reaches more than 200V.   
However, when the saturations were removed from the plant 
model, the compensator works perfectly and achieves a settling 
time below 0.1s under a step input.  

To achieve the control design specifications while keeping the 
plant saturations, a trapezoidal velocity profile is used. The 
trapezoid employed in Section III.C with the input vector [0 0.1 
0.2 0.3 0.4] was designed to give a settling time of 0.3s. The 
control and armature voltage it creates are by far the lowest 
among all three motion profiles examined. Choosing the input 
vector to be [0 0.05 0.1 0.15 0.4] speeds up the intended 
settling time to below 0.2s. The control voltage moved within 
the range of -15V and +15V, only slightly above the saturation 
limit. 

 

C.  Comparing PID and Loop-Shaping Controller 
      Although very desirable, a direct, quantitative comparison 
between the PID and loop-shaping controller performance is 
very difficult to implement. This is due to the fact that PID 
and loop-shaping controller lack optimal tuning strategies. 
Without the knowledge of the controller parameter set which 
leads to optimal performance, a direct comparison between the 
controller performances cannot be made.  Complicating 
matters even further, the loop-shaping technique does not 
allow straightforward tuning in the sense of tuning the gains of 
the PID. Rather it relies on the often tedious process of finding 
the adequate poles and zeros, entirely based on graphical 
manipulation of Bode plots.  
  
To address these issues, Zheng and Gao [6] have devised a 
technique to optimize controller parameters using Genetic 
Algorithm. A quantitative comparison based on cost function 
minimization leads to the conclusion that a parameterized 

version of the loop-shaping technique [7] outperforms the PID 
controller. Judged from the cost function, the loop shaping 
technique is 23% more efficient than the classical PID control. 
However, such a comparison does not include the associated 
manual tuning effort for finding the optimal parameters.  
 

VI. PLANT WITH RESONANT MODE 
      The phenomenon of resonance leads to a sharp increase in 
system excitation and associated instability. It happens when a 
periodic input of a certain frequency causes a sudden rise in 
plant gain. The frequency at which the plant becomes 
vulnerable to such inputs is called the natural frequency. In this 
section we want to characterize the loop-shaping technique in 
terms of its ability to address resonance. For the simulation, the 
transfer function block (7) is inserted into the plant model, 
between torque and acceleration. Such a block is referred to as 
a resonant mode.  
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With 05.0=ζ  and with a natural frequency of 50=nω  and 
πω 100=n . The addition modifies the plant transfer function to  
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for 50=nω  and πω 100=n  respectively. If the modes are 
multiplied together, then the plant will exhibit resonances at 
both frequencies. For the sake of illustrative purposes, we 
address the modes separately. 

The Bode amplitude plots show peak at the natural frequency 
while the phase plots show sudden vertical dip over 180 
degrees (Figure 12).          
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Figure 12.  Bode Plots of Plant with resonant modes 

The presence of resonant modes makes simple poles and zeros 
less effective in loop-shaping. The adopted strategy is to move 



the resonant mode as far away from the 13rad/sec bandwidth as 
possible (see figure 13), while still maintaining reasonable 
stability margins. This was achieved for the resonance 
occurring at πω 100=n , with a compensator given by (10). The 
crossover frequency is 24.6 rad/sec.  In the simulation a settling 
time very close to 0.2 seconds was achieved under a step input.  
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Figure 12.  Bode Plots of Plant with resonant modes 

 

It proved to be unfeasible to move the resonant mode at 
50=ω  away from the bandwidth of 13rad/s, while still 

maintaining reasonable stability margins. The resulting 
simulations always exhibited drastic position overshoot. This 
fact exemplifies the following rule concerning loop-shaping 
design:  

“bandwidth is severely constricted by the location of the 
resonant mode”.                      

 
 

VII. CONCLUSION AND FUTURE WORK 
PID and loop-shaping controller performances have been 
compared through application to a realistic industrial 
positioning plant model, with specific design criteria. The 
model is simulated in Matlab Simulink under various input and 
disturbance conditions. The performance of both control 
methods are contingent on the particular input motion profiles 
and external disturbances. In the case of the PID, the controller 
gains may be easily readjusted to accommodate each condition, 
though the tuning is based entirely on trial and error. The loop-
shaping control design, which has its basis in frequency 
response analysis, is based on manipulating the Bode gain plot 
of the compensator loop. In theory, this mathematically 
motivated method successfully addresses most of the design 
criteria, even the existence of certain resonant modes. Yet its 

actual performance is drastically hampered by plant saturations 
and other non-linearities in dynamics.  It cannot be tuned in the 
sense of tuning a PID, which limits its flexibility and ease of 
use under a change of input profile. However, it may be shown 
through advanced mathematical optimization techniques that a 
certain class of loop-shaping controller significantly 
outperforms PID controllers.  

Our analysis of these issues leads to the conclusion that there is 
a chasmic trade-off between performance and ease-of-use. The 
industrial success of the PID controller may be largely due to 
its flexibility in tuning which gives it a very wide range of 
applications. In contrast, the loop-shaping controller is very 
plant-specific. However, neither one addresses the problem of 
uncertainties in plant dynamics well.  

These facts render us with a hint of what a successful control 
strategy should feature:  

a) the control technique must be versatile, i.e., it cannot be 
plant-specific.   

b) the controller must be easy to use, with a small number of 
tuning parameters 

c) the control technique should be capable of addressing 
change in plant dynamics 

As daunting as these tasks may appear, for all we know, a 
solution may be already in store [6].   
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