I. Concepts and Tools

- Mathematics for Dynamic Systems
 - Differential Equation
 - Transfer Function
 - State Space
- Time Response
 - Transient
 - Steady State
- Frequency Response
 - Bode and Nyquist Plots
 - Stability and Stability Margins
- Extensions to Digital Control

A Differential Equation of Motion

Newton's Law:

$$\ddot{y}(t) = f(t, y(t), \dot{y}(t), w(t)) + bu(t)$$

A Linear Approximation:

$$\ddot{y}(t) = -\frac{\mu}{J}\dot{y}(t) + w(t) + \frac{K_T}{J}u(t)$$

Laplace Transform and Transfer Function

$$Y(s) = \int_0^\infty y(t)e^{-st}dt$$

$$\ddot{y}(t) = -\frac{\mu}{J}\dot{y}(t) + \frac{K_T}{J}u(t)$$

$$\downarrow \qquad \qquad \downarrow$$

$$s^2Y(s) = (-\frac{\mu}{J})sY(s) + \frac{K_T}{J}U(s)$$

$$\downarrow \qquad \qquad \downarrow$$

$$\frac{Y(s)}{U(s)} = G_p(s) = \frac{K_T}{s(Js + \mu)}$$

State Space Description

Let
$$x = \begin{bmatrix} x_1 \\ x_2 \end{bmatrix}$$

$$\begin{cases} \dot{x} = Ax + Bu \\ y = Cx + Du \end{cases}$$
with
$$A = \begin{bmatrix} 0 & 1 \\ 0 & -\frac{\mu}{J} \end{bmatrix}, B = \begin{bmatrix} 0 \\ \frac{K_T}{J} \end{bmatrix}$$

$$C = \begin{bmatrix} 1 & 0 \end{bmatrix}, D = 0$$

From State Space to Transfer Function

$$G_p(s) = C(sI - A)^{-1}B + D$$

$$= \frac{K_T}{s(Js + \mu)}$$

Linear System Concepts

- States form a linear vector space
- Controllable Subspace and Controllability
- Observable Subspace and Observability
- The Linear Time Invariance (LTI) Assumptions
- Stability
 - Lyapunov Stability (for linear or nonlinear systems)
 - LTI System Stability: poles/eigenvalues in RHP

A Motion Control Problem

From Differential Eq. To Transfer Function

$$T_{L} = J_{T} \cdot \dot{\Theta} + B_{T} \cdot \dot{\Theta}$$

$$T_{L} = T_{D} \cdot g r_{T}$$

$$TF = \frac{\Theta_{L}}{T_{D}} = \frac{g r_{T}}{s (J_{T} \cdot s + B_{T})}$$

$$T_{D} = v_{CS} \cdot K_{S} \cdot K_{A} \cdot K_{T}$$

$$G_{p}(s) = \frac{\Theta_{L}}{v_{CS}} = \frac{K_{S} \cdot K_{A} \cdot K_{T} \cdot g r_{T}}{s (J_{T} \cdot s + B_{T})}$$

Transfer Function model of the motion plant

$$G_{p}(s) = \frac{K_{S} \cdot K_{A} \cdot K_{T} \cdot gr_{T}}{s(J_{T} \cdot s + B_{T})}$$

$$G_p(s) = \frac{K}{s(Js + \alpha)}$$

Unity Feedback Control System

Common Nonlinearities

Linearization

Time Response

Open Loop Transient Response

- How parameters of transfer functions affect output
- Terminologies for 1st and 2nd order systems

First Order Transfer Function

$$G(s) = \frac{1}{\left(\frac{s}{\omega_n}\right)^2 + 2\xi\left(\frac{s}{\omega_n}\right) + 1}$$

 ξ : damping ratio, ω_n : natural frequency

 $\xi > 1$: overdamped

 ξ < 1: underdamped

 $\xi = 1$: critically damped

 $\xi = 0$: undamped

Terminologies

Calculations

$$OS\% = e^{-(\xi \pi / \sqrt{1 - \xi^2})} \times 100$$

$$T_s = \frac{4}{\xi \omega_n}$$

Steady State Response

Steady state response is determined by the dc gain: G(0)

Steady State Error

$$e_{ss} = e(t)|_{t \to \infty} = sE(s)|_{s \to 0}$$

$$E(s) = \frac{R(s)}{1 + G_c(s)G_p(s)}$$

Frequency Response: The MOST useful concept in control theory

- Performance Measures
 - Bandwidth
 - Disturbance Rejection
 - Noise Sensitivity
- Stability
 - Yes or No?
 - Stability Margins (closeness to instability)
 - Robustness (generalized stability margins)

Frequency Response

I-28

Bode Plot (Magnitude and Phase vs. Frequency) G(s) = 1/(s + 2)

Polar Plot: imaginary part vs. real part of $G(j\omega)$ G(s) = 1/(s + 2)

Bandwidth of Feedback Control

- -3dB Frequency of CLTF $\frac{Y(j\omega)}{R(j\omega)} = \frac{G_c(j\omega)G_p(j\omega)}{1 + G_c(j\omega)G_p(j\omega)}$
- 0 dB Crossing Frequency (ω_c) of $G_c(j\omega)G_p(j\omega)$
- Defines how fast y follows r

Disturbance Rejection

$$\frac{Y(j\omega)}{D(j\omega)} = \frac{1}{1 + G_c(j\omega)G_p(j\omega)}$$

measures disturbance rejection quality

Noise Sensitivity

$$\frac{U(j\omega)}{N(j\omega)} = \frac{-G_c(j\omega)}{1 + G_c(j\omega)G_p(j\omega)}$$

$$\approx -G_c(j\omega) \text{ at high frequency}$$

Nyquist Plot

Using G (j ω) to determine the stability of

$$G(s) = G_c(s)G_p(s)$$

H(s): Sensor and Filter

The Idea of Mapping

Nyquist Contour

Nyquist Stability Criteria

- Determine stability by inspection
- Assume G(s)H(s) is stable, let s complete the Ncountour

The closed-loop system is stable if G(s)H(s) does not encircle the (-1,0) point

- Basis of Stability Robustness
- Further Reading: unstable G(s)H(s), # of unstable poles

Nyquist Stability Criteria

Stability Robustness

- The (-1,0) point on the GH-plane becomes the focus
- Distance to instability:

$$G(s)H(s)-(-1)=1+G(s)H(s)$$

- Robust Stability Condition
 Distance to instability > Dynamic Variations of G(s)H(s)
- This is basis of modern robust control theory

Gain and Phase Margins

(-1,0) is equivalent of $0db \angle (-180)^{\circ}$ point on Bode plot

Stability Margins:

Digital Control

Discrete Signals

Digital Control Concepts

- Sampling
 - Rate
 - Delay
- ADC and DAC
 - Resolution (quantization levels)
 - Speed
 - Aliasing
- Digital Control Algorithm
 Difference equation

Discrete System Description

Discrete system

$$u[n] \longrightarrow h[n] \longrightarrow y[n]$$
 $h[n]: impulse response$

Difference equation

$$\sum_{k=0}^{N} a_k y[n-k] = \sum_{k=0}^{M} b_k u[n-k]$$

Discrete Fourier Transform and z-Transform

$$X(e^{j\omega}) = \sum_{n=-\infty}^{\infty} x[n]e^{-j\omega}$$

$$X(z) = \sum_{n = -\infty}^{\infty} x[n]z^{-n}$$

Discrete Transfer Function and Frequency Response

$$H(z) = \frac{Y(z)}{X(z)} = \frac{\sum_{k=0}^{M} b_k z^{-k}}{\sum_{k=0}^{N} a_k z^{-k}}$$

$$H(e^{j\omega}) = H(z)|_{z=e} j\omega$$

Application of Basic Concepts to Previously Designed Controllers